| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txtop | Structured version Visualization version GIF version | ||
| Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| txtop | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) | |
| 2 | 1 | txval 23486 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 3 | topbas 22894 | . . . 4 ⊢ (𝑅 ∈ Top → 𝑅 ∈ TopBases) | |
| 4 | topbas 22894 | . . . 4 ⊢ (𝑆 ∈ Top → 𝑆 ∈ TopBases) | |
| 5 | 1 | txbas 23489 | . . . 4 ⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases) |
| 6 | 3, 4, 5 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases) |
| 7 | tgcl 22891 | . . 3 ⊢ (ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) ∈ Top) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) ∈ Top) |
| 9 | 2, 8 | eqeltrd 2828 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 × cxp 5629 ran crn 5632 ‘cfv 6500 (class class class)co 7370 ∈ cmpo 7372 topGenctg 17378 Topctop 22815 TopBasesctb 22867 ×t ctx 23482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-fv 6508 df-ov 7373 df-oprab 7374 df-mpo 7375 df-1st 7948 df-2nd 7949 df-topgen 17384 df-top 22816 df-bases 22868 df-tx 23484 |
| This theorem is referenced by: txtopi 23512 txtopon 23513 txcld 23525 neitx 23529 txlly 23558 txnlly 23559 txcmplem1 23563 txcmp 23565 hausdiag 23567 txhaus 23569 tx1stc 23572 txkgen 23574 xkococn 23582 xkoinjcn 23609 txconn 23611 imasnopn 23612 imasncls 23614 utop2nei 24173 utop3cls 24174 qtophaus 33821 txpconn 35214 |
| Copyright terms: Public domain | W3C validator |