| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txtop | Structured version Visualization version GIF version | ||
| Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| txtop | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) | |
| 2 | 1 | txval 23451 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 3 | topbas 22859 | . . . 4 ⊢ (𝑅 ∈ Top → 𝑅 ∈ TopBases) | |
| 4 | topbas 22859 | . . . 4 ⊢ (𝑆 ∈ Top → 𝑆 ∈ TopBases) | |
| 5 | 1 | txbas 23454 | . . . 4 ⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases) |
| 6 | 3, 4, 5 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases) |
| 7 | tgcl 22856 | . . 3 ⊢ (ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) ∈ Top) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) ∈ Top) |
| 9 | 2, 8 | eqeltrd 2828 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 × cxp 5636 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 topGenctg 17400 Topctop 22780 TopBasesctb 22832 ×t ctx 23447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-topgen 17406 df-top 22781 df-bases 22833 df-tx 23449 |
| This theorem is referenced by: txtopi 23477 txtopon 23478 txcld 23490 neitx 23494 txlly 23523 txnlly 23524 txcmplem1 23528 txcmp 23530 hausdiag 23532 txhaus 23534 tx1stc 23537 txkgen 23539 xkococn 23547 xkoinjcn 23574 txconn 23576 imasnopn 23577 imasncls 23579 utop2nei 24138 utop3cls 24139 qtophaus 33826 txpconn 35219 |
| Copyright terms: Public domain | W3C validator |