MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtop Structured version   Visualization version   GIF version

Theorem txtop 23484
Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txtop ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)

Proof of Theorem txtop
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
21txval 23479 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
3 topbas 22887 . . . 4 (𝑅 ∈ Top → 𝑅 ∈ TopBases)
4 topbas 22887 . . . 4 (𝑆 ∈ Top → 𝑆 ∈ TopBases)
51txbas 23482 . . . 4 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases)
63, 4, 5syl2an 596 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases)
7 tgcl 22884 . . 3 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) ∈ Top)
86, 7syl 17 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) ∈ Top)
92, 8eqeltrd 2831 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111   × cxp 5612  ran crn 5615  cfv 6481  (class class class)co 7346  cmpo 7348  topGenctg 17341  Topctop 22808  TopBasesctb 22860   ×t ctx 23475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-topgen 17347  df-top 22809  df-bases 22861  df-tx 23477
This theorem is referenced by:  txtopi  23505  txtopon  23506  txcld  23518  neitx  23522  txlly  23551  txnlly  23552  txcmplem1  23556  txcmp  23558  hausdiag  23560  txhaus  23562  tx1stc  23565  txkgen  23567  xkococn  23575  xkoinjcn  23602  txconn  23604  imasnopn  23605  imasncls  23607  utop2nei  24165  utop3cls  24166  qtophaus  33849  txpconn  35276
  Copyright terms: Public domain W3C validator