Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > txtop | Structured version Visualization version GIF version |
Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
txtop | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) | |
2 | 1 | txval 22623 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
3 | topbas 22030 | . . . 4 ⊢ (𝑅 ∈ Top → 𝑅 ∈ TopBases) | |
4 | topbas 22030 | . . . 4 ⊢ (𝑆 ∈ Top → 𝑆 ∈ TopBases) | |
5 | 1 | txbas 22626 | . . . 4 ⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases) |
6 | 3, 4, 5 | syl2an 595 | . . 3 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases) |
7 | tgcl 22027 | . . 3 ⊢ (ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) ∈ Top) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) ∈ Top) |
9 | 2, 8 | eqeltrd 2839 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 × cxp 5578 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 topGenctg 17065 Topctop 21950 TopBasesctb 22003 ×t ctx 22619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-topgen 17071 df-top 21951 df-bases 22004 df-tx 22621 |
This theorem is referenced by: txtopi 22649 txtopon 22650 txcld 22662 neitx 22666 txlly 22695 txnlly 22696 txcmplem1 22700 txcmp 22702 hausdiag 22704 txhaus 22706 tx1stc 22709 txkgen 22711 xkococn 22719 xkoinjcn 22746 txconn 22748 imasnopn 22749 imasncls 22751 utop2nei 23310 utop3cls 23311 qtophaus 31688 txpconn 33094 |
Copyright terms: Public domain | W3C validator |