MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtop Structured version   Visualization version   GIF version

Theorem txtop 22628
Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txtop ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)

Proof of Theorem txtop
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
21txval 22623 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
3 topbas 22030 . . . 4 (𝑅 ∈ Top → 𝑅 ∈ TopBases)
4 topbas 22030 . . . 4 (𝑆 ∈ Top → 𝑆 ∈ TopBases)
51txbas 22626 . . . 4 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases)
63, 4, 5syl2an 595 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases)
7 tgcl 22027 . . 3 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) ∈ Top)
86, 7syl 17 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) ∈ Top)
92, 8eqeltrd 2839 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   × cxp 5578  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257  topGenctg 17065  Topctop 21950  TopBasesctb 22003   ×t ctx 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-topgen 17071  df-top 21951  df-bases 22004  df-tx 22621
This theorem is referenced by:  txtopi  22649  txtopon  22650  txcld  22662  neitx  22666  txlly  22695  txnlly  22696  txcmplem1  22700  txcmp  22702  hausdiag  22704  txhaus  22706  tx1stc  22709  txkgen  22711  xkococn  22719  xkoinjcn  22746  txconn  22748  imasnopn  22749  imasncls  22751  utop2nei  23310  utop3cls  23311  qtophaus  31688  txpconn  33094
  Copyright terms: Public domain W3C validator