| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txtop | Structured version Visualization version GIF version | ||
| Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| txtop | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) | |
| 2 | 1 | txval 23458 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
| 3 | topbas 22866 | . . . 4 ⊢ (𝑅 ∈ Top → 𝑅 ∈ TopBases) | |
| 4 | topbas 22866 | . . . 4 ⊢ (𝑆 ∈ Top → 𝑆 ∈ TopBases) | |
| 5 | 1 | txbas 23461 | . . . 4 ⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases) |
| 6 | 3, 4, 5 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases) |
| 7 | tgcl 22863 | . . 3 ⊢ (ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) ∈ Top) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) ∈ Top) |
| 9 | 2, 8 | eqeltrd 2829 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 × cxp 5639 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 topGenctg 17407 Topctop 22787 TopBasesctb 22839 ×t ctx 23454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-topgen 17413 df-top 22788 df-bases 22840 df-tx 23456 |
| This theorem is referenced by: txtopi 23484 txtopon 23485 txcld 23497 neitx 23501 txlly 23530 txnlly 23531 txcmplem1 23535 txcmp 23537 hausdiag 23539 txhaus 23541 tx1stc 23544 txkgen 23546 xkococn 23554 xkoinjcn 23581 txconn 23583 imasnopn 23584 imasncls 23586 utop2nei 24145 utop3cls 24146 qtophaus 33833 txpconn 35226 |
| Copyright terms: Public domain | W3C validator |