![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgtop | Structured version Visualization version GIF version |
Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
tgtop | β’ (π½ β Top β (topGenβπ½) = π½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltg3 22465 | . . . 4 β’ (π½ β Top β (π₯ β (topGenβπ½) β βπ¦(π¦ β π½ β§ π₯ = βͺ π¦))) | |
2 | simpr 486 | . . . . . . 7 β’ (((π½ β Top β§ π¦ β π½) β§ π₯ = βͺ π¦) β π₯ = βͺ π¦) | |
3 | uniopn 22399 | . . . . . . . 8 β’ ((π½ β Top β§ π¦ β π½) β βͺ π¦ β π½) | |
4 | 3 | adantr 482 | . . . . . . 7 β’ (((π½ β Top β§ π¦ β π½) β§ π₯ = βͺ π¦) β βͺ π¦ β π½) |
5 | 2, 4 | eqeltrd 2834 | . . . . . 6 β’ (((π½ β Top β§ π¦ β π½) β§ π₯ = βͺ π¦) β π₯ β π½) |
6 | 5 | expl 459 | . . . . 5 β’ (π½ β Top β ((π¦ β π½ β§ π₯ = βͺ π¦) β π₯ β π½)) |
7 | 6 | exlimdv 1937 | . . . 4 β’ (π½ β Top β (βπ¦(π¦ β π½ β§ π₯ = βͺ π¦) β π₯ β π½)) |
8 | 1, 7 | sylbid 239 | . . 3 β’ (π½ β Top β (π₯ β (topGenβπ½) β π₯ β π½)) |
9 | 8 | ssrdv 3989 | . 2 β’ (π½ β Top β (topGenβπ½) β π½) |
10 | bastg 22469 | . 2 β’ (π½ β Top β π½ β (topGenβπ½)) | |
11 | 9, 10 | eqssd 4000 | 1 β’ (π½ β Top β (topGenβπ½) = π½) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 βwex 1782 β wcel 2107 β wss 3949 βͺ cuni 4909 βcfv 6544 topGenctg 17383 Topctop 22395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-topgen 17389 df-top 22396 |
This theorem is referenced by: eltop 22477 eltop2 22478 eltop3 22479 bastop 22484 tgtop11 22485 basgen 22491 tgfiss 22494 bastop1 22496 resttop 22664 dis1stc 23003 alexsubALTlem1 23551 xrtgioo 24322 topfne 35239 topfneec 35240 topfneec2 35241 dissneqlem 36221 |
Copyright terms: Public domain | W3C validator |