| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgtop | Structured version Visualization version GIF version | ||
| Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| tgtop | ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltg3 22849 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) ↔ ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦))) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → 𝑥 = ∪ 𝑦) | |
| 3 | uniopn 22784 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∪ 𝑦 ∈ 𝐽) | |
| 4 | 3 | adantr 480 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → ∪ 𝑦 ∈ 𝐽) |
| 5 | 2, 4 | eqeltrd 2828 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽) |
| 6 | 5 | expl 457 | . . . . 5 ⊢ (𝐽 ∈ Top → ((𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽)) |
| 7 | 6 | exlimdv 1933 | . . . 4 ⊢ (𝐽 ∈ Top → (∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽)) |
| 8 | 1, 7 | sylbid 240 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) → 𝑥 ∈ 𝐽)) |
| 9 | 8 | ssrdv 3952 | . 2 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) ⊆ 𝐽) |
| 10 | bastg 22853 | . 2 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (topGen‘𝐽)) | |
| 11 | 9, 10 | eqssd 3964 | 1 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3914 ∪ cuni 4871 ‘cfv 6511 topGenctg 17400 Topctop 22780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-topgen 17406 df-top 22781 |
| This theorem is referenced by: eltop 22861 eltop2 22862 eltop3 22863 bastop 22868 tgtop11 22869 basgen 22875 tgfiss 22878 bastop1 22880 resttop 23047 dis1stc 23386 alexsubALTlem1 23934 xrtgioo 24695 topfne 36342 topfneec 36343 topfneec2 36344 dissneqlem 37328 |
| Copyright terms: Public domain | W3C validator |