![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgtop | Structured version Visualization version GIF version |
Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
tgtop | ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltg3 22985 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) ↔ ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦))) | |
2 | simpr 484 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → 𝑥 = ∪ 𝑦) | |
3 | uniopn 22919 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∪ 𝑦 ∈ 𝐽) | |
4 | 3 | adantr 480 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → ∪ 𝑦 ∈ 𝐽) |
5 | 2, 4 | eqeltrd 2839 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽) |
6 | 5 | expl 457 | . . . . 5 ⊢ (𝐽 ∈ Top → ((𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽)) |
7 | 6 | exlimdv 1931 | . . . 4 ⊢ (𝐽 ∈ Top → (∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽)) |
8 | 1, 7 | sylbid 240 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) → 𝑥 ∈ 𝐽)) |
9 | 8 | ssrdv 4001 | . 2 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) ⊆ 𝐽) |
10 | bastg 22989 | . 2 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (topGen‘𝐽)) | |
11 | 9, 10 | eqssd 4013 | 1 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ⊆ wss 3963 ∪ cuni 4912 ‘cfv 6563 topGenctg 17484 Topctop 22915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-topgen 17490 df-top 22916 |
This theorem is referenced by: eltop 22997 eltop2 22998 eltop3 22999 bastop 23004 tgtop11 23005 basgen 23011 tgfiss 23014 bastop1 23016 resttop 23184 dis1stc 23523 alexsubALTlem1 24071 xrtgioo 24842 topfne 36337 topfneec 36338 topfneec2 36339 dissneqlem 37323 |
Copyright terms: Public domain | W3C validator |