Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgtop | Structured version Visualization version GIF version |
Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
tgtop | ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltg3 22157 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) ↔ ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦))) | |
2 | simpr 486 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → 𝑥 = ∪ 𝑦) | |
3 | uniopn 22091 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∪ 𝑦 ∈ 𝐽) | |
4 | 3 | adantr 482 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → ∪ 𝑦 ∈ 𝐽) |
5 | 2, 4 | eqeltrd 2837 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽) |
6 | 5 | expl 459 | . . . . 5 ⊢ (𝐽 ∈ Top → ((𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽)) |
7 | 6 | exlimdv 1934 | . . . 4 ⊢ (𝐽 ∈ Top → (∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽)) |
8 | 1, 7 | sylbid 239 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) → 𝑥 ∈ 𝐽)) |
9 | 8 | ssrdv 3932 | . 2 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) ⊆ 𝐽) |
10 | bastg 22161 | . 2 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (topGen‘𝐽)) | |
11 | 9, 10 | eqssd 3943 | 1 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ⊆ wss 3892 ∪ cuni 4844 ‘cfv 6458 topGenctg 17193 Topctop 22087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-topgen 17199 df-top 22088 |
This theorem is referenced by: eltop 22169 eltop2 22170 eltop3 22171 bastop 22176 tgtop11 22177 basgen 22183 tgfiss 22186 bastop1 22188 resttop 22356 dis1stc 22695 alexsubALTlem1 23243 xrtgioo 24014 topfne 34588 topfneec 34589 topfneec2 34590 dissneqlem 35555 |
Copyright terms: Public domain | W3C validator |