MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgtop Structured version   Visualization version   GIF version

Theorem tgtop 22168
Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
tgtop (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)

Proof of Theorem tgtop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltg3 22157 . . . 4 (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) ↔ ∃𝑦(𝑦𝐽𝑥 = 𝑦)))
2 simpr 486 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
3 uniopn 22091 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑦𝐽) → 𝑦𝐽)
43adantr 482 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑥 = 𝑦) → 𝑦𝐽)
52, 4eqeltrd 2837 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑥 = 𝑦) → 𝑥𝐽)
65expl 459 . . . . 5 (𝐽 ∈ Top → ((𝑦𝐽𝑥 = 𝑦) → 𝑥𝐽))
76exlimdv 1934 . . . 4 (𝐽 ∈ Top → (∃𝑦(𝑦𝐽𝑥 = 𝑦) → 𝑥𝐽))
81, 7sylbid 239 . . 3 (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) → 𝑥𝐽))
98ssrdv 3932 . 2 (𝐽 ∈ Top → (topGen‘𝐽) ⊆ 𝐽)
10 bastg 22161 . 2 (𝐽 ∈ Top → 𝐽 ⊆ (topGen‘𝐽))
119, 10eqssd 3943 1 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wex 1779  wcel 2104  wss 3892   cuni 4844  cfv 6458  topGenctg 17193  Topctop 22087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-iota 6410  df-fun 6460  df-fv 6466  df-topgen 17199  df-top 22088
This theorem is referenced by:  eltop  22169  eltop2  22170  eltop3  22171  bastop  22176  tgtop11  22177  basgen  22183  tgfiss  22186  bastop1  22188  resttop  22356  dis1stc  22695  alexsubALTlem1  23243  xrtgioo  24014  topfne  34588  topfneec  34589  topfneec2  34590  dissneqlem  35555
  Copyright terms: Public domain W3C validator