| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgtop | Structured version Visualization version GIF version | ||
| Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| tgtop | ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltg3 22882 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) ↔ ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦))) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → 𝑥 = ∪ 𝑦) | |
| 3 | uniopn 22817 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∪ 𝑦 ∈ 𝐽) | |
| 4 | 3 | adantr 480 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → ∪ 𝑦 ∈ 𝐽) |
| 5 | 2, 4 | eqeltrd 2828 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽) |
| 6 | 5 | expl 457 | . . . . 5 ⊢ (𝐽 ∈ Top → ((𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽)) |
| 7 | 6 | exlimdv 1933 | . . . 4 ⊢ (𝐽 ∈ Top → (∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽)) |
| 8 | 1, 7 | sylbid 240 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) → 𝑥 ∈ 𝐽)) |
| 9 | 8 | ssrdv 3949 | . 2 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) ⊆ 𝐽) |
| 10 | bastg 22886 | . 2 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (topGen‘𝐽)) | |
| 11 | 9, 10 | eqssd 3961 | 1 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3911 ∪ cuni 4867 ‘cfv 6499 topGenctg 17376 Topctop 22813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-topgen 17382 df-top 22814 |
| This theorem is referenced by: eltop 22894 eltop2 22895 eltop3 22896 bastop 22901 tgtop11 22902 basgen 22908 tgfiss 22911 bastop1 22913 resttop 23080 dis1stc 23419 alexsubALTlem1 23967 xrtgioo 24728 topfne 36335 topfneec 36336 topfneec2 36337 dissneqlem 37321 |
| Copyright terms: Public domain | W3C validator |