MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgtop Structured version   Visualization version   GIF version

Theorem tgtop 22860
Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
tgtop (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)

Proof of Theorem tgtop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltg3 22849 . . . 4 (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) ↔ ∃𝑦(𝑦𝐽𝑥 = 𝑦)))
2 simpr 484 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
3 uniopn 22784 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑦𝐽) → 𝑦𝐽)
43adantr 480 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑥 = 𝑦) → 𝑦𝐽)
52, 4eqeltrd 2828 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑥 = 𝑦) → 𝑥𝐽)
65expl 457 . . . . 5 (𝐽 ∈ Top → ((𝑦𝐽𝑥 = 𝑦) → 𝑥𝐽))
76exlimdv 1933 . . . 4 (𝐽 ∈ Top → (∃𝑦(𝑦𝐽𝑥 = 𝑦) → 𝑥𝐽))
81, 7sylbid 240 . . 3 (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) → 𝑥𝐽))
98ssrdv 3952 . 2 (𝐽 ∈ Top → (topGen‘𝐽) ⊆ 𝐽)
10 bastg 22853 . 2 (𝐽 ∈ Top → 𝐽 ⊆ (topGen‘𝐽))
119, 10eqssd 3964 1 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wss 3914   cuni 4871  cfv 6511  topGenctg 17400  Topctop 22780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-topgen 17406  df-top 22781
This theorem is referenced by:  eltop  22861  eltop2  22862  eltop3  22863  bastop  22868  tgtop11  22869  basgen  22875  tgfiss  22878  bastop1  22880  resttop  23047  dis1stc  23386  alexsubALTlem1  23934  xrtgioo  24695  topfne  36342  topfneec  36343  topfneec2  36344  dissneqlem  37328
  Copyright terms: Public domain W3C validator