MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distopon Structured version   Visualization version   GIF version

Theorem distopon 23025
Description: The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
distopon (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))

Proof of Theorem distopon
StepHypRef Expression
1 distop 23023 . 2 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 unipw 5470 . . 3 𝒫 𝐴 = 𝐴
32eqcomi 2749 . 2 𝐴 = 𝒫 𝐴
4 istopon 22939 . 2 (𝒫 𝐴 ∈ (TopOn‘𝐴) ↔ (𝒫 𝐴 ∈ Top ∧ 𝐴 = 𝒫 𝐴))
51, 3, 4sylanblrc 589 1 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  𝒫 cpw 4622   cuni 4931  cfv 6573  Topctop 22920  TopOnctopon 22937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-top 22921  df-topon 22938
This theorem is referenced by:  sn0topon  23026  toponmre  23122  cndis  23320  txdis1cn  23664  xkofvcn  23713  distgp  24128  efmndtmd  24130  symgtgp  24135  cnfdmsn  45803
  Copyright terms: Public domain W3C validator