MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distopon Structured version   Visualization version   GIF version

Theorem distopon 22884
Description: The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
distopon (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))

Proof of Theorem distopon
StepHypRef Expression
1 distop 22882 . 2 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 unipw 5410 . . 3 𝒫 𝐴 = 𝐴
32eqcomi 2738 . 2 𝐴 = 𝒫 𝐴
4 istopon 22799 . 2 (𝒫 𝐴 ∈ (TopOn‘𝐴) ↔ (𝒫 𝐴 ∈ Top ∧ 𝐴 = 𝒫 𝐴))
51, 3, 4sylanblrc 590 1 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  𝒫 cpw 4563   cuni 4871  cfv 6511  Topctop 22780  TopOnctopon 22797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-top 22781  df-topon 22798
This theorem is referenced by:  sn0topon  22885  toponmre  22980  cndis  23178  txdis1cn  23522  xkofvcn  23571  distgp  23986  efmndtmd  23988  symgtgp  23993  cnfdmsn  45880
  Copyright terms: Public domain W3C validator