| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > distopon | Structured version Visualization version GIF version | ||
| Description: The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| distopon | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop 22880 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | |
| 2 | unipw 5393 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 3 | 2 | eqcomi 2738 | . 2 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 4 | istopon 22797 | . 2 ⊢ (𝒫 𝐴 ∈ (TopOn‘𝐴) ↔ (𝒫 𝐴 ∈ Top ∧ 𝐴 = ∪ 𝒫 𝐴)) | |
| 5 | 1, 3, 4 | sylanblrc 590 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 𝒫 cpw 4551 ∪ cuni 4858 ‘cfv 6482 Topctop 22778 TopOnctopon 22795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-top 22779 df-topon 22796 |
| This theorem is referenced by: sn0topon 22883 toponmre 22978 cndis 23176 txdis1cn 23520 xkofvcn 23569 distgp 23984 efmndtmd 23986 symgtgp 23991 cnfdmsn 45867 |
| Copyright terms: Public domain | W3C validator |