| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > distopon | Structured version Visualization version GIF version | ||
| Description: The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| distopon | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop 22910 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | |
| 2 | unipw 5389 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 3 | 2 | eqcomi 2740 | . 2 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 4 | istopon 22827 | . 2 ⊢ (𝒫 𝐴 ∈ (TopOn‘𝐴) ↔ (𝒫 𝐴 ∈ Top ∧ 𝐴 = ∪ 𝒫 𝐴)) | |
| 5 | 1, 3, 4 | sylanblrc 590 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 𝒫 cpw 4547 ∪ cuni 4856 ‘cfv 6481 Topctop 22808 TopOnctopon 22825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-top 22809 df-topon 22826 |
| This theorem is referenced by: sn0topon 22913 toponmre 23008 cndis 23206 txdis1cn 23550 xkofvcn 23599 distgp 24014 efmndtmd 24016 symgtgp 24021 cnfdmsn 45990 |
| Copyright terms: Public domain | W3C validator |