MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistop Structured version   Visualization version   GIF version

Theorem indistop 22887
Description: The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
indistop {∅, 𝐴} ∈ Top

Proof of Theorem indistop
StepHypRef Expression
1 indislem 22885 . 2 {∅, ( I ‘𝐴)} = {∅, 𝐴}
2 fvex 6835 . . . 4 ( I ‘𝐴) ∈ V
3 indistopon 22886 . . . 4 (( I ‘𝐴) ∈ V → {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴)))
42, 3ax-mp 5 . . 3 {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴))
54topontopi 22800 . 2 {∅, ( I ‘𝐴)} ∈ Top
61, 5eqeltrri 2825 1 {∅, 𝐴} ∈ Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3436  c0 4284  {cpr 4579   I cid 5513  cfv 6482  Topctop 22778  TopOnctopon 22795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-top 22779  df-topon 22796
This theorem is referenced by:  indistpsx  22895  indistps  22896  indistps2  22897  indiscld  22976  indisconn  23303  txindis  23519  indispconn  35211  onpsstopbas  36408
  Copyright terms: Public domain W3C validator