MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistop Structured version   Visualization version   GIF version

Theorem indistop 22925
Description: The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
indistop {βˆ…, 𝐴} ∈ Top

Proof of Theorem indistop
StepHypRef Expression
1 indislem 22923 . 2 {βˆ…, ( I β€˜π΄)} = {βˆ…, 𝐴}
2 fvex 6915 . . . 4 ( I β€˜π΄) ∈ V
3 indistopon 22924 . . . 4 (( I β€˜π΄) ∈ V β†’ {βˆ…, ( I β€˜π΄)} ∈ (TopOnβ€˜( I β€˜π΄)))
42, 3ax-mp 5 . . 3 {βˆ…, ( I β€˜π΄)} ∈ (TopOnβ€˜( I β€˜π΄))
54topontopi 22837 . 2 {βˆ…, ( I β€˜π΄)} ∈ Top
61, 5eqeltrri 2826 1 {βˆ…, 𝐴} ∈ Top
Colors of variables: wff setvar class
Syntax hints:   ∈ wcel 2098  Vcvv 3473  βˆ…c0 4326  {cpr 4634   I cid 5579  β€˜cfv 6553  Topctop 22815  TopOnctopon 22832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fv 6561  df-top 22816  df-topon 22833
This theorem is referenced by:  indistpsx  22933  indistps  22934  indistps2  22935  indiscld  23015  indisconn  23342  txindis  23558  indispconn  34877  onpsstopbas  35947
  Copyright terms: Public domain W3C validator