| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indistop | Structured version Visualization version GIF version | ||
| Description: The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| indistop | ⊢ {∅, 𝐴} ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indislem 22885 | . 2 ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | |
| 2 | fvex 6835 | . . . 4 ⊢ ( I ‘𝐴) ∈ V | |
| 3 | indistopon 22886 | . . . 4 ⊢ (( I ‘𝐴) ∈ V → {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴))) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴)) |
| 5 | 4 | topontopi 22800 | . 2 ⊢ {∅, ( I ‘𝐴)} ∈ Top |
| 6 | 1, 5 | eqeltrri 2825 | 1 ⊢ {∅, 𝐴} ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 ∅c0 4284 {cpr 4579 I cid 5513 ‘cfv 6482 Topctop 22778 TopOnctopon 22795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-top 22779 df-topon 22796 |
| This theorem is referenced by: indistpsx 22895 indistps 22896 indistps2 22897 indiscld 22976 indisconn 23303 txindis 23519 indispconn 35211 onpsstopbas 36408 |
| Copyright terms: Public domain | W3C validator |