Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indistop | Structured version Visualization version GIF version |
Description: The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
indistop | ⊢ {∅, 𝐴} ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indislem 22058 | . 2 ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | |
2 | fvex 6769 | . . . 4 ⊢ ( I ‘𝐴) ∈ V | |
3 | indistopon 22059 | . . . 4 ⊢ (( I ‘𝐴) ∈ V → {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴)) |
5 | 4 | topontopi 21972 | . 2 ⊢ {∅, ( I ‘𝐴)} ∈ Top |
6 | 1, 5 | eqeltrri 2836 | 1 ⊢ {∅, 𝐴} ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {cpr 4560 I cid 5479 ‘cfv 6418 Topctop 21950 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-top 21951 df-topon 21968 |
This theorem is referenced by: indistpsx 22068 indistps 22069 indistps2 22070 indiscld 22150 indisconn 22477 txindis 22693 indispconn 33096 onpsstopbas 34546 |
Copyright terms: Public domain | W3C validator |