MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistop Structured version   Visualization version   GIF version

Theorem indistop 22504
Description: The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
indistop {βˆ…, 𝐴} ∈ Top

Proof of Theorem indistop
StepHypRef Expression
1 indislem 22502 . 2 {βˆ…, ( I β€˜π΄)} = {βˆ…, 𝐴}
2 fvex 6904 . . . 4 ( I β€˜π΄) ∈ V
3 indistopon 22503 . . . 4 (( I β€˜π΄) ∈ V β†’ {βˆ…, ( I β€˜π΄)} ∈ (TopOnβ€˜( I β€˜π΄)))
42, 3ax-mp 5 . . 3 {βˆ…, ( I β€˜π΄)} ∈ (TopOnβ€˜( I β€˜π΄))
54topontopi 22416 . 2 {βˆ…, ( I β€˜π΄)} ∈ Top
61, 5eqeltrri 2830 1 {βˆ…, 𝐴} ∈ Top
Colors of variables: wff setvar class
Syntax hints:   ∈ wcel 2106  Vcvv 3474  βˆ…c0 4322  {cpr 4630   I cid 5573  β€˜cfv 6543  Topctop 22394  TopOnctopon 22411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-top 22395  df-topon 22412
This theorem is referenced by:  indistpsx  22512  indistps  22513  indistps2  22514  indiscld  22594  indisconn  22921  txindis  23137  indispconn  34220  onpsstopbas  35310
  Copyright terms: Public domain W3C validator