MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistop Structured version   Visualization version   GIF version

Theorem indistop 22922
Description: The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
indistop {∅, 𝐴} ∈ Top

Proof of Theorem indistop
StepHypRef Expression
1 indislem 22920 . 2 {∅, ( I ‘𝐴)} = {∅, 𝐴}
2 fvex 6853 . . . 4 ( I ‘𝐴) ∈ V
3 indistopon 22921 . . . 4 (( I ‘𝐴) ∈ V → {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴)))
42, 3ax-mp 5 . . 3 {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴))
54topontopi 22835 . 2 {∅, ( I ‘𝐴)} ∈ Top
61, 5eqeltrri 2825 1 {∅, 𝐴} ∈ Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3444  c0 4292  {cpr 4587   I cid 5525  cfv 6499  Topctop 22813  TopOnctopon 22830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-top 22814  df-topon 22831
This theorem is referenced by:  indistpsx  22930  indistps  22931  indistps2  22932  indiscld  23011  indisconn  23338  txindis  23554  indispconn  35214  onpsstopbas  36411
  Copyright terms: Public domain W3C validator