![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indistop | Structured version Visualization version GIF version |
Description: The indiscrete topology on a set π΄. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
indistop | β’ {β , π΄} β Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indislem 22502 | . 2 β’ {β , ( I βπ΄)} = {β , π΄} | |
2 | fvex 6904 | . . . 4 β’ ( I βπ΄) β V | |
3 | indistopon 22503 | . . . 4 β’ (( I βπ΄) β V β {β , ( I βπ΄)} β (TopOnβ( I βπ΄))) | |
4 | 2, 3 | ax-mp 5 | . . 3 β’ {β , ( I βπ΄)} β (TopOnβ( I βπ΄)) |
5 | 4 | topontopi 22416 | . 2 β’ {β , ( I βπ΄)} β Top |
6 | 1, 5 | eqeltrri 2830 | 1 β’ {β , π΄} β Top |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2106 Vcvv 3474 β c0 4322 {cpr 4630 I cid 5573 βcfv 6543 Topctop 22394 TopOnctopon 22411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-top 22395 df-topon 22412 |
This theorem is referenced by: indistpsx 22512 indistps 22513 indistps2 22514 indiscld 22594 indisconn 22921 txindis 23137 indispconn 34220 onpsstopbas 35310 |
Copyright terms: Public domain | W3C validator |