Step | Hyp | Ref
| Expression |
1 | | uniss 4847 |
. . . . . 6
⊢ (𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥
⊆ ∪ 𝒫 𝐴) |
2 | | unipw 5366 |
. . . . . 6
⊢ ∪ 𝒫 𝐴 = 𝐴 |
3 | 1, 2 | sseqtrdi 3971 |
. . . . 5
⊢ (𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥
⊆ 𝐴) |
4 | | vuniex 7592 |
. . . . . 6
⊢ ∪ 𝑥
∈ V |
5 | 4 | elpw 4537 |
. . . . 5
⊢ (∪ 𝑥
∈ 𝒫 𝐴 ↔
∪ 𝑥 ⊆ 𝐴) |
6 | 3, 5 | sylibr 233 |
. . . 4
⊢ (𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥
∈ 𝒫 𝐴) |
7 | 6 | ax-gen 1798 |
. . 3
⊢
∀𝑥(𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥
∈ 𝒫 𝐴) |
8 | 7 | a1i 11 |
. 2
⊢ (𝐴 ∈ 𝑉 → ∀𝑥(𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴)) |
9 | | velpw 4538 |
. . . . . 6
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
10 | | velpw 4538 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) |
11 | | ssinss1 4171 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝐴 → (𝑥 ∩ 𝑦) ⊆ 𝐴) |
12 | 11 | a1i 11 |
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝐴 → (𝑥 ⊆ 𝐴 → (𝑥 ∩ 𝑦) ⊆ 𝐴)) |
13 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
14 | 13 | inex2 5242 |
. . . . . . . . . 10
⊢ (𝑥 ∩ 𝑦) ∈ V |
15 | 14 | elpw 4537 |
. . . . . . . . 9
⊢ ((𝑥 ∩ 𝑦) ∈ 𝒫 𝐴 ↔ (𝑥 ∩ 𝑦) ⊆ 𝐴) |
16 | 12, 15 | syl6ibr 251 |
. . . . . . . 8
⊢ (𝑦 ⊆ 𝐴 → (𝑥 ⊆ 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 𝐴)) |
17 | 10, 16 | sylbi 216 |
. . . . . . 7
⊢ (𝑦 ∈ 𝒫 𝐴 → (𝑥 ⊆ 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 𝐴)) |
18 | 17 | com12 32 |
. . . . . 6
⊢ (𝑥 ⊆ 𝐴 → (𝑦 ∈ 𝒫 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 𝐴)) |
19 | 9, 18 | sylbi 216 |
. . . . 5
⊢ (𝑥 ∈ 𝒫 𝐴 → (𝑦 ∈ 𝒫 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 𝐴)) |
20 | 19 | ralrimiv 3102 |
. . . 4
⊢ (𝑥 ∈ 𝒫 𝐴 → ∀𝑦 ∈ 𝒫 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 𝐴) |
21 | 20 | rgen 3074 |
. . 3
⊢
∀𝑥 ∈
𝒫 𝐴∀𝑦 ∈ 𝒫 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 𝐴 |
22 | 21 | a1i 11 |
. 2
⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 𝐴) |
23 | | pwexg 5301 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
24 | | istopg 22044 |
. . 3
⊢
(𝒫 𝐴 ∈
V → (𝒫 𝐴
∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 𝐴))) |
25 | 23, 24 | syl 17 |
. 2
⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 𝐴))) |
26 | 8, 22, 25 | mpbir2and 710 |
1
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) |