MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distop Structured version   Visualization version   GIF version

Theorem distop 21322
Description: The discrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
distop (𝐴𝑉 → 𝒫 𝐴 ∈ Top)

Proof of Theorem distop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4729 . . . . . 6 (𝑥 ⊆ 𝒫 𝐴 𝑥 𝒫 𝐴)
2 unipw 5195 . . . . . 6 𝒫 𝐴 = 𝐴
31, 2syl6sseq 3900 . . . . 5 (𝑥 ⊆ 𝒫 𝐴 𝑥𝐴)
4 vuniex 7282 . . . . . 6 𝑥 ∈ V
54elpw 4422 . . . . 5 ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴)
63, 5sylibr 226 . . . 4 (𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴)
76ax-gen 1759 . . 3 𝑥(𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴)
87a1i 11 . 2 (𝐴𝑉 → ∀𝑥(𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴))
9 selpw 4423 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
10 selpw 4423 . . . . . . . 8 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
11 ssinss1 4095 . . . . . . . . . 10 (𝑥𝐴 → (𝑥𝑦) ⊆ 𝐴)
1211a1i 11 . . . . . . . . 9 (𝑦𝐴 → (𝑥𝐴 → (𝑥𝑦) ⊆ 𝐴))
13 vex 3411 . . . . . . . . . . 11 𝑦 ∈ V
1413inex2 5075 . . . . . . . . . 10 (𝑥𝑦) ∈ V
1514elpw 4422 . . . . . . . . 9 ((𝑥𝑦) ∈ 𝒫 𝐴 ↔ (𝑥𝑦) ⊆ 𝐴)
1612, 15syl6ibr 244 . . . . . . . 8 (𝑦𝐴 → (𝑥𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴))
1710, 16sylbi 209 . . . . . . 7 (𝑦 ∈ 𝒫 𝐴 → (𝑥𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴))
1817com12 32 . . . . . 6 (𝑥𝐴 → (𝑦 ∈ 𝒫 𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴))
199, 18sylbi 209 . . . . 5 (𝑥 ∈ 𝒫 𝐴 → (𝑦 ∈ 𝒫 𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴))
2019ralrimiv 3124 . . . 4 (𝑥 ∈ 𝒫 𝐴 → ∀𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴)
2120rgen 3091 . . 3 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴
2221a1i 11 . 2 (𝐴𝑉 → ∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴)
23 pwexg 5128 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
24 istopg 21222 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴)))
2523, 24syl 17 . 2 (𝐴𝑉 → (𝒫 𝐴 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴)))
268, 22, 25mpbir2and 701 1 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wal 1506  wcel 2051  wral 3081  Vcvv 3408  cin 3821  wss 3822  𝒫 cpw 4416   cuni 4708  Topctop 21220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ral 3086  df-rex 3087  df-v 3410  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-pw 4418  df-sn 4436  df-pr 4438  df-uni 4709  df-top 21221
This theorem is referenced by:  topnex  21323  distopon  21324  distps  21342  discld  21416  restdis  21505  dishaus  21709  discmp  21725  dis2ndc  21787  dislly  21824  dis1stc  21826  dissnlocfin  21856  locfindis  21857  txdis  21959  xkopt  21982  xkofvcn  22011  symgtgp  22428  dispcmp  30799
  Copyright terms: Public domain W3C validator