MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distop Structured version   Visualization version   GIF version

Theorem distop 22915
Description: The discrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
distop (𝐴𝑉 → 𝒫 𝐴 ∈ Top)

Proof of Theorem distop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4875 . . . . . 6 (𝑥 ⊆ 𝒫 𝐴 𝑥 𝒫 𝐴)
2 unipw 5405 . . . . . 6 𝒫 𝐴 = 𝐴
31, 2sseqtrdi 3984 . . . . 5 (𝑥 ⊆ 𝒫 𝐴 𝑥𝐴)
4 vuniex 7695 . . . . . 6 𝑥 ∈ V
54elpw 4563 . . . . 5 ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴)
63, 5sylibr 234 . . . 4 (𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴)
76ax-gen 1795 . . 3 𝑥(𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴)
87a1i 11 . 2 (𝐴𝑉 → ∀𝑥(𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴))
9 velpw 4564 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
10 velpw 4564 . . . . . . . 8 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
11 ssinss1 4205 . . . . . . . . . 10 (𝑥𝐴 → (𝑥𝑦) ⊆ 𝐴)
1211a1i 11 . . . . . . . . 9 (𝑦𝐴 → (𝑥𝐴 → (𝑥𝑦) ⊆ 𝐴))
13 vex 3448 . . . . . . . . . . 11 𝑦 ∈ V
1413inex2 5268 . . . . . . . . . 10 (𝑥𝑦) ∈ V
1514elpw 4563 . . . . . . . . 9 ((𝑥𝑦) ∈ 𝒫 𝐴 ↔ (𝑥𝑦) ⊆ 𝐴)
1612, 15imbitrrdi 252 . . . . . . . 8 (𝑦𝐴 → (𝑥𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴))
1710, 16sylbi 217 . . . . . . 7 (𝑦 ∈ 𝒫 𝐴 → (𝑥𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴))
1817com12 32 . . . . . 6 (𝑥𝐴 → (𝑦 ∈ 𝒫 𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴))
199, 18sylbi 217 . . . . 5 (𝑥 ∈ 𝒫 𝐴 → (𝑦 ∈ 𝒫 𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴))
2019ralrimiv 3124 . . . 4 (𝑥 ∈ 𝒫 𝐴 → ∀𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴)
2120rgen 3046 . . 3 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴
2221a1i 11 . 2 (𝐴𝑉 → ∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴)
23 pwexg 5328 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
24 istopg 22815 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴)))
2523, 24syl 17 . 2 (𝐴𝑉 → (𝒫 𝐴 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴)))
268, 22, 25mpbir2and 713 1 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  wral 3044  Vcvv 3444  cin 3910  wss 3911  𝒫 cpw 4559   cuni 4867  Topctop 22813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-un 3916  df-in 3918  df-ss 3928  df-pw 4561  df-sn 4586  df-pr 4588  df-uni 4868  df-top 22814
This theorem is referenced by:  topnex  22916  distopon  22917  distps  22935  discld  23009  restdis  23098  dishaus  23302  discmp  23318  dis2ndc  23380  dislly  23417  dis1stc  23419  dissnlocfin  23449  locfindis  23450  txdis  23552  xkopt  23575  xkofvcn  23604  efmndtmd  24021  symgtgp  24026  dispcmp  33842
  Copyright terms: Public domain W3C validator