MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpossym Structured version   Visualization version   GIF version

Theorem tpossym 8198
Description: Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
tpossym (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem tpossym
StepHypRef Expression
1 tposfn 8195 . . 3 (𝐹 Fn (𝐴 × 𝐴) → tpos 𝐹 Fn (𝐴 × 𝐴))
2 eqfnov2 7483 . . 3 ((tpos 𝐹 Fn (𝐴 × 𝐴) ∧ 𝐹 Fn (𝐴 × 𝐴)) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦)))
31, 2mpancom 688 . 2 (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦)))
4 eqcom 2736 . . . 4 ((𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑥tpos 𝐹𝑦))
5 ovtpos 8181 . . . . 5 (𝑥tpos 𝐹𝑦) = (𝑦𝐹𝑥)
65eqeq2i 2742 . . . 4 ((𝑥𝐹𝑦) = (𝑥tpos 𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
74, 6bitri 275 . . 3 ((𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
872ralbii 3104 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
93, 8bitrdi 287 1 (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wral 3044   × cxp 5621   Fn wfn 6481  (class class class)co 7353  tpos ctpos 8165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-ov 7356  df-tpos 8166
This theorem is referenced by:  xmettpos  24253  oppcendc  49004
  Copyright terms: Public domain W3C validator