MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpossym Structured version   Visualization version   GIF version

Theorem tpossym 8242
Description: Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
tpossym (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem tpossym
StepHypRef Expression
1 tposfn 8239 . . 3 (𝐹 Fn (𝐴 × 𝐴) → tpos 𝐹 Fn (𝐴 × 𝐴))
2 eqfnov2 7538 . . 3 ((tpos 𝐹 Fn (𝐴 × 𝐴) ∧ 𝐹 Fn (𝐴 × 𝐴)) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦)))
31, 2mpancom 686 . 2 (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦)))
4 eqcom 2739 . . . 4 ((𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑥tpos 𝐹𝑦))
5 ovtpos 8225 . . . . 5 (𝑥tpos 𝐹𝑦) = (𝑦𝐹𝑥)
65eqeq2i 2745 . . . 4 ((𝑥𝐹𝑦) = (𝑥tpos 𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
74, 6bitri 274 . . 3 ((𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
872ralbii 3128 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
93, 8bitrdi 286 1 (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wral 3061   × cxp 5674   Fn wfn 6538  (class class class)co 7408  tpos ctpos 8209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-ov 7411  df-tpos 8210
This theorem is referenced by:  xmettpos  23854
  Copyright terms: Public domain W3C validator