MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposex Structured version   Visualization version   GIF version

Theorem tposex 8147
Description: A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposex.1 𝐹 ∈ V
Assertion
Ref Expression
tposex tpos 𝐹 ∈ V

Proof of Theorem tposex
StepHypRef Expression
1 tposex.1 . 2 𝐹 ∈ V
2 tposexg 8127 . 2 (𝐹 ∈ V → tpos 𝐹 ∈ V)
31, 2ax-mp 5 1 tpos 𝐹 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  Vcvv 3441  tpos ctpos 8112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-mpt 5177  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-tpos 8113
This theorem is referenced by:  oppchomfval  17521  oppchomfvalOLD  17522  oppccofval  17524  oppcmon  17548  yonedalem21  18089  yonedalem22  18094  oppgplusfval  19049  opprmulfval  19960
  Copyright terms: Public domain W3C validator