MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposex Structured version   Visualization version   GIF version

Theorem tposex 8242
Description: A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposex.1 𝐹 ∈ V
Assertion
Ref Expression
tposex tpos 𝐹 ∈ V

Proof of Theorem tposex
StepHypRef Expression
1 tposex.1 . 2 𝐹 ∈ V
2 tposexg 8222 . 2 (𝐹 ∈ V → tpos 𝐹 ∈ V)
31, 2ax-mp 5 1 tpos 𝐹 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3450  tpos ctpos 8207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-tpos 8208
This theorem is referenced by:  oppchomfval  17682  oppccofval  17684  oppcmon  17707  yonedalem21  18241  yonedalem22  18246  oppgplusfval  19287  opprmulfval  20255  opprabs  33460  2oppf  49125  oppf1  49132  oppf2  49133  opf11  49396  opf12  49397
  Copyright terms: Public domain W3C validator