| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposex | Structured version Visualization version GIF version | ||
| Description: A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposex.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| tposex | ⊢ tpos 𝐹 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposex.1 | . 2 ⊢ 𝐹 ∈ V | |
| 2 | tposexg 8222 | . 2 ⊢ (𝐹 ∈ V → tpos 𝐹 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ tpos 𝐹 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 tpos ctpos 8207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-tpos 8208 |
| This theorem is referenced by: oppchomfval 17682 oppccofval 17684 oppcmon 17707 yonedalem21 18241 yonedalem22 18246 oppgplusfval 19287 opprmulfval 20255 opprabs 33460 2oppf 49125 oppf1 49132 oppf2 49133 opf11 49396 opf12 49397 |
| Copyright terms: Public domain | W3C validator |