| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposex | Structured version Visualization version GIF version | ||
| Description: A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposex.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| tposex | ⊢ tpos 𝐹 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposex.1 | . 2 ⊢ 𝐹 ∈ V | |
| 2 | tposexg 8180 | . 2 ⊢ (𝐹 ∈ V → tpos 𝐹 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ tpos 𝐹 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 tpos ctpos 8165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-tpos 8166 |
| This theorem is referenced by: oppchomfval 17638 oppccofval 17640 oppcmon 17663 yonedalem21 18197 yonedalem22 18202 oppgplusfval 19245 opprmulfval 20242 opprabs 33429 2oppf 49118 oppf1 49125 oppf2 49126 opf11 49389 opf12 49390 |
| Copyright terms: Public domain | W3C validator |