![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposex | Structured version Visualization version GIF version |
Description: A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposex.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
tposex | ⊢ tpos 𝐹 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposex.1 | . 2 ⊢ 𝐹 ∈ V | |
2 | tposexg 8270 | . 2 ⊢ (𝐹 ∈ V → tpos 𝐹 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ tpos 𝐹 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3479 tpos ctpos 8255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-tpos 8256 |
This theorem is referenced by: oppchomfval 17765 oppchomfvalOLD 17766 oppccofval 17768 oppcmon 17792 yonedalem21 18336 yonedalem22 18341 oppgplusfval 19385 opprmulfval 20359 opprabs 33503 |
Copyright terms: Public domain | W3C validator |