| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opprabs | Structured version Visualization version GIF version | ||
| Description: The opposite ring of the opposite ring is the original ring. Note the conditions on this theorem, which makes it unpractical in case we only have e.g. 𝑅 ∈ Ring as a premise. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| opprabs.o | ⊢ 𝑂 = (oppr‘𝑅) |
| opprabs.m | ⊢ · = (.r‘𝑅) |
| opprabs.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| opprabs.2 | ⊢ (𝜑 → Fun 𝑅) |
| opprabs.3 | ⊢ (𝜑 → (.r‘ndx) ∈ dom 𝑅) |
| opprabs.4 | ⊢ (𝜑 → · Fn (𝐵 × 𝐵)) |
| Ref | Expression |
|---|---|
| opprabs | ⊢ (𝜑 → 𝑅 = (oppr‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprabs.4 | . . . . . 6 ⊢ (𝜑 → · Fn (𝐵 × 𝐵)) | |
| 2 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | opprabs.m | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
| 4 | opprabs.o | . . . . . . . . 9 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | eqid 2731 | . . . . . . . . 9 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 6 | 2, 3, 4, 5 | opprmulfval 20255 | . . . . . . . 8 ⊢ (.r‘𝑂) = tpos · |
| 7 | 6 | tposeqi 8189 | . . . . . . 7 ⊢ tpos (.r‘𝑂) = tpos tpos · |
| 8 | fnrel 6583 | . . . . . . . 8 ⊢ ( · Fn (𝐵 × 𝐵) → Rel · ) | |
| 9 | relxp 5634 | . . . . . . . . 9 ⊢ Rel (𝐵 × 𝐵) | |
| 10 | fndm 6584 | . . . . . . . . . 10 ⊢ ( · Fn (𝐵 × 𝐵) → dom · = (𝐵 × 𝐵)) | |
| 11 | 10 | releqd 5719 | . . . . . . . . 9 ⊢ ( · Fn (𝐵 × 𝐵) → (Rel dom · ↔ Rel (𝐵 × 𝐵))) |
| 12 | 9, 11 | mpbiri 258 | . . . . . . . 8 ⊢ ( · Fn (𝐵 × 𝐵) → Rel dom · ) |
| 13 | tpostpos2 8177 | . . . . . . . 8 ⊢ ((Rel · ∧ Rel dom · ) → tpos tpos · = · ) | |
| 14 | 8, 12, 13 | syl2anc 584 | . . . . . . 7 ⊢ ( · Fn (𝐵 × 𝐵) → tpos tpos · = · ) |
| 15 | 7, 14 | eqtrid 2778 | . . . . . 6 ⊢ ( · Fn (𝐵 × 𝐵) → tpos (.r‘𝑂) = · ) |
| 16 | 1, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → tpos (.r‘𝑂) = · ) |
| 17 | 16, 3 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → tpos (.r‘𝑂) = (.r‘𝑅)) |
| 18 | 17 | opeq2d 4832 | . . 3 ⊢ (𝜑 → 〈(.r‘ndx), tpos (.r‘𝑂)〉 = 〈(.r‘ndx), (.r‘𝑅)〉) |
| 19 | 18 | oveq2d 7362 | . 2 ⊢ (𝜑 → (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) = (𝑅 sSet 〈(.r‘ndx), (.r‘𝑅)〉)) |
| 20 | opprabs.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 21 | 4, 2 | opprbas 20259 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 22 | eqid 2731 | . . . . . 6 ⊢ (oppr‘𝑂) = (oppr‘𝑂) | |
| 23 | 21, 5, 22 | opprval 20254 | . . . . 5 ⊢ (oppr‘𝑂) = (𝑂 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) |
| 24 | 2, 3, 4 | opprval 20254 | . . . . . 6 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
| 25 | 24 | oveq1i 7356 | . . . . 5 ⊢ (𝑂 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) = ((𝑅 sSet 〈(.r‘ndx), tpos · 〉) sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) |
| 26 | 23, 25 | eqtri 2754 | . . . 4 ⊢ (oppr‘𝑂) = ((𝑅 sSet 〈(.r‘ndx), tpos · 〉) sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) |
| 27 | fvex 6835 | . . . . . 6 ⊢ (.r‘𝑂) ∈ V | |
| 28 | 27 | tposex 8190 | . . . . 5 ⊢ tpos (.r‘𝑂) ∈ V |
| 29 | setsabs 17087 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ tpos (.r‘𝑂) ∈ V) → ((𝑅 sSet 〈(.r‘ndx), tpos · 〉) sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉)) | |
| 30 | 28, 29 | mpan2 691 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((𝑅 sSet 〈(.r‘ndx), tpos · 〉) sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉)) |
| 31 | 26, 30 | eqtrid 2778 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (oppr‘𝑂) = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉)) |
| 32 | 20, 31 | syl 17 | . 2 ⊢ (𝜑 → (oppr‘𝑂) = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉)) |
| 33 | mulridx 17196 | . . 3 ⊢ .r = Slot (.r‘ndx) | |
| 34 | opprabs.2 | . . 3 ⊢ (𝜑 → Fun 𝑅) | |
| 35 | opprabs.3 | . . 3 ⊢ (𝜑 → (.r‘ndx) ∈ dom 𝑅) | |
| 36 | 33, 20, 34, 35 | setsidvald 17107 | . 2 ⊢ (𝜑 → 𝑅 = (𝑅 sSet 〈(.r‘ndx), (.r‘𝑅)〉)) |
| 37 | 19, 32, 36 | 3eqtr4rd 2777 | 1 ⊢ (𝜑 → 𝑅 = (oppr‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 × cxp 5614 dom cdm 5616 Rel wrel 5621 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 tpos ctpos 8155 sSet csts 17071 ndxcnx 17101 Basecbs 17117 .rcmulr 17159 opprcoppr 20252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-mulr 17172 df-oppr 20253 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |