| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opprabs | Structured version Visualization version GIF version | ||
| Description: The opposite ring of the opposite ring is the original ring. Note the conditions on this theorem, which makes it unpractical in case we only have e.g. 𝑅 ∈ Ring as a premise. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| opprabs.o | ⊢ 𝑂 = (oppr‘𝑅) |
| opprabs.m | ⊢ · = (.r‘𝑅) |
| opprabs.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| opprabs.2 | ⊢ (𝜑 → Fun 𝑅) |
| opprabs.3 | ⊢ (𝜑 → (.r‘ndx) ∈ dom 𝑅) |
| opprabs.4 | ⊢ (𝜑 → · Fn (𝐵 × 𝐵)) |
| Ref | Expression |
|---|---|
| opprabs | ⊢ (𝜑 → 𝑅 = (oppr‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprabs.4 | . . . . . 6 ⊢ (𝜑 → · Fn (𝐵 × 𝐵)) | |
| 2 | eqid 2736 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | opprabs.m | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
| 4 | opprabs.o | . . . . . . . . 9 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | eqid 2736 | . . . . . . . . 9 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 6 | 2, 3, 4, 5 | opprmulfval 20304 | . . . . . . . 8 ⊢ (.r‘𝑂) = tpos · |
| 7 | 6 | tposeqi 8263 | . . . . . . 7 ⊢ tpos (.r‘𝑂) = tpos tpos · |
| 8 | fnrel 6645 | . . . . . . . 8 ⊢ ( · Fn (𝐵 × 𝐵) → Rel · ) | |
| 9 | relxp 5677 | . . . . . . . . 9 ⊢ Rel (𝐵 × 𝐵) | |
| 10 | fndm 6646 | . . . . . . . . . 10 ⊢ ( · Fn (𝐵 × 𝐵) → dom · = (𝐵 × 𝐵)) | |
| 11 | 10 | releqd 5762 | . . . . . . . . 9 ⊢ ( · Fn (𝐵 × 𝐵) → (Rel dom · ↔ Rel (𝐵 × 𝐵))) |
| 12 | 9, 11 | mpbiri 258 | . . . . . . . 8 ⊢ ( · Fn (𝐵 × 𝐵) → Rel dom · ) |
| 13 | tpostpos2 8251 | . . . . . . . 8 ⊢ ((Rel · ∧ Rel dom · ) → tpos tpos · = · ) | |
| 14 | 8, 12, 13 | syl2anc 584 | . . . . . . 7 ⊢ ( · Fn (𝐵 × 𝐵) → tpos tpos · = · ) |
| 15 | 7, 14 | eqtrid 2783 | . . . . . 6 ⊢ ( · Fn (𝐵 × 𝐵) → tpos (.r‘𝑂) = · ) |
| 16 | 1, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → tpos (.r‘𝑂) = · ) |
| 17 | 16, 3 | eqtrdi 2787 | . . . 4 ⊢ (𝜑 → tpos (.r‘𝑂) = (.r‘𝑅)) |
| 18 | 17 | opeq2d 4861 | . . 3 ⊢ (𝜑 → 〈(.r‘ndx), tpos (.r‘𝑂)〉 = 〈(.r‘ndx), (.r‘𝑅)〉) |
| 19 | 18 | oveq2d 7426 | . 2 ⊢ (𝜑 → (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) = (𝑅 sSet 〈(.r‘ndx), (.r‘𝑅)〉)) |
| 20 | opprabs.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 21 | 4, 2 | opprbas 20308 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 22 | eqid 2736 | . . . . . 6 ⊢ (oppr‘𝑂) = (oppr‘𝑂) | |
| 23 | 21, 5, 22 | opprval 20303 | . . . . 5 ⊢ (oppr‘𝑂) = (𝑂 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) |
| 24 | 2, 3, 4 | opprval 20303 | . . . . . 6 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
| 25 | 24 | oveq1i 7420 | . . . . 5 ⊢ (𝑂 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) = ((𝑅 sSet 〈(.r‘ndx), tpos · 〉) sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) |
| 26 | 23, 25 | eqtri 2759 | . . . 4 ⊢ (oppr‘𝑂) = ((𝑅 sSet 〈(.r‘ndx), tpos · 〉) sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) |
| 27 | fvex 6894 | . . . . . 6 ⊢ (.r‘𝑂) ∈ V | |
| 28 | 27 | tposex 8264 | . . . . 5 ⊢ tpos (.r‘𝑂) ∈ V |
| 29 | setsabs 17203 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ tpos (.r‘𝑂) ∈ V) → ((𝑅 sSet 〈(.r‘ndx), tpos · 〉) sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉)) | |
| 30 | 28, 29 | mpan2 691 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((𝑅 sSet 〈(.r‘ndx), tpos · 〉) sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉)) |
| 31 | 26, 30 | eqtrid 2783 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (oppr‘𝑂) = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉)) |
| 32 | 20, 31 | syl 17 | . 2 ⊢ (𝜑 → (oppr‘𝑂) = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉)) |
| 33 | mulridx 17314 | . . 3 ⊢ .r = Slot (.r‘ndx) | |
| 34 | opprabs.2 | . . 3 ⊢ (𝜑 → Fun 𝑅) | |
| 35 | opprabs.3 | . . 3 ⊢ (𝜑 → (.r‘ndx) ∈ dom 𝑅) | |
| 36 | 33, 20, 34, 35 | setsidvald 17223 | . 2 ⊢ (𝜑 → 𝑅 = (𝑅 sSet 〈(.r‘ndx), (.r‘𝑅)〉)) |
| 37 | 19, 32, 36 | 3eqtr4rd 2782 | 1 ⊢ (𝜑 → 𝑅 = (oppr‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 〈cop 4612 × cxp 5657 dom cdm 5659 Rel wrel 5664 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 tpos ctpos 8229 sSet csts 17187 ndxcnx 17217 Basecbs 17233 .rcmulr 17277 opprcoppr 20301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-mulr 17290 df-oppr 20302 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |