Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprabs Structured version   Visualization version   GIF version

Theorem opprabs 33502
Description: The opposite ring of the opposite ring is the original ring. Note the conditions on this theorem, which makes it unpractical in case we only have e.g. 𝑅 ∈ Ring as a premise. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
opprabs.o 𝑂 = (oppr𝑅)
opprabs.m · = (.r𝑅)
opprabs.1 (𝜑𝑅𝑉)
opprabs.2 (𝜑 → Fun 𝑅)
opprabs.3 (𝜑 → (.r‘ndx) ∈ dom 𝑅)
opprabs.4 (𝜑· Fn (𝐵 × 𝐵))
Assertion
Ref Expression
opprabs (𝜑𝑅 = (oppr𝑂))

Proof of Theorem opprabs
StepHypRef Expression
1 opprabs.4 . . . . . 6 (𝜑· Fn (𝐵 × 𝐵))
2 eqid 2736 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
3 opprabs.m . . . . . . . . 9 · = (.r𝑅)
4 opprabs.o . . . . . . . . 9 𝑂 = (oppr𝑅)
5 eqid 2736 . . . . . . . . 9 (.r𝑂) = (.r𝑂)
62, 3, 4, 5opprmulfval 20304 . . . . . . . 8 (.r𝑂) = tpos ·
76tposeqi 8263 . . . . . . 7 tpos (.r𝑂) = tpos tpos ·
8 fnrel 6645 . . . . . . . 8 ( · Fn (𝐵 × 𝐵) → Rel · )
9 relxp 5677 . . . . . . . . 9 Rel (𝐵 × 𝐵)
10 fndm 6646 . . . . . . . . . 10 ( · Fn (𝐵 × 𝐵) → dom · = (𝐵 × 𝐵))
1110releqd 5762 . . . . . . . . 9 ( · Fn (𝐵 × 𝐵) → (Rel dom · ↔ Rel (𝐵 × 𝐵)))
129, 11mpbiri 258 . . . . . . . 8 ( · Fn (𝐵 × 𝐵) → Rel dom · )
13 tpostpos2 8251 . . . . . . . 8 ((Rel · ∧ Rel dom · ) → tpos tpos · = · )
148, 12, 13syl2anc 584 . . . . . . 7 ( · Fn (𝐵 × 𝐵) → tpos tpos · = · )
157, 14eqtrid 2783 . . . . . 6 ( · Fn (𝐵 × 𝐵) → tpos (.r𝑂) = · )
161, 15syl 17 . . . . 5 (𝜑 → tpos (.r𝑂) = · )
1716, 3eqtrdi 2787 . . . 4 (𝜑 → tpos (.r𝑂) = (.r𝑅))
1817opeq2d 4861 . . 3 (𝜑 → ⟨(.r‘ndx), tpos (.r𝑂)⟩ = ⟨(.r‘ndx), (.r𝑅)⟩)
1918oveq2d 7426 . 2 (𝜑 → (𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑂)⟩) = (𝑅 sSet ⟨(.r‘ndx), (.r𝑅)⟩))
20 opprabs.1 . . 3 (𝜑𝑅𝑉)
214, 2opprbas 20308 . . . . . 6 (Base‘𝑅) = (Base‘𝑂)
22 eqid 2736 . . . . . 6 (oppr𝑂) = (oppr𝑂)
2321, 5, 22opprval 20303 . . . . 5 (oppr𝑂) = (𝑂 sSet ⟨(.r‘ndx), tpos (.r𝑂)⟩)
242, 3, 4opprval 20303 . . . . . 6 𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩)
2524oveq1i 7420 . . . . 5 (𝑂 sSet ⟨(.r‘ndx), tpos (.r𝑂)⟩) = ((𝑅 sSet ⟨(.r‘ndx), tpos · ⟩) sSet ⟨(.r‘ndx), tpos (.r𝑂)⟩)
2623, 25eqtri 2759 . . . 4 (oppr𝑂) = ((𝑅 sSet ⟨(.r‘ndx), tpos · ⟩) sSet ⟨(.r‘ndx), tpos (.r𝑂)⟩)
27 fvex 6894 . . . . . 6 (.r𝑂) ∈ V
2827tposex 8264 . . . . 5 tpos (.r𝑂) ∈ V
29 setsabs 17203 . . . . 5 ((𝑅𝑉 ∧ tpos (.r𝑂) ∈ V) → ((𝑅 sSet ⟨(.r‘ndx), tpos · ⟩) sSet ⟨(.r‘ndx), tpos (.r𝑂)⟩) = (𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑂)⟩))
3028, 29mpan2 691 . . . 4 (𝑅𝑉 → ((𝑅 sSet ⟨(.r‘ndx), tpos · ⟩) sSet ⟨(.r‘ndx), tpos (.r𝑂)⟩) = (𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑂)⟩))
3126, 30eqtrid 2783 . . 3 (𝑅𝑉 → (oppr𝑂) = (𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑂)⟩))
3220, 31syl 17 . 2 (𝜑 → (oppr𝑂) = (𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑂)⟩))
33 mulridx 17314 . . 3 .r = Slot (.r‘ndx)
34 opprabs.2 . . 3 (𝜑 → Fun 𝑅)
35 opprabs.3 . . 3 (𝜑 → (.r‘ndx) ∈ dom 𝑅)
3633, 20, 34, 35setsidvald 17223 . 2 (𝜑𝑅 = (𝑅 sSet ⟨(.r‘ndx), (.r𝑅)⟩))
3719, 32, 363eqtr4rd 2782 1 (𝜑𝑅 = (oppr𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  cop 4612   × cxp 5657  dom cdm 5659  Rel wrel 5664  Fun wfun 6530   Fn wfn 6531  cfv 6536  (class class class)co 7410  tpos ctpos 8229   sSet csts 17187  ndxcnx 17217  Basecbs 17233  .rcmulr 17277  opprcoppr 20301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-mulr 17290  df-oppr 20302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator