![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opprabs | Structured version Visualization version GIF version |
Description: The opposite ring of the opposite ring is the original ring. Note the conditions on this theorem, which makes it unpractical in case we only have e.g. 𝑅 ∈ Ring as a premise. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
Ref | Expression |
---|---|
opprabs.o | ⊢ 𝑂 = (oppr‘𝑅) |
opprabs.m | ⊢ · = (.r‘𝑅) |
opprabs.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
opprabs.2 | ⊢ (𝜑 → Fun 𝑅) |
opprabs.3 | ⊢ (𝜑 → (.r‘ndx) ∈ dom 𝑅) |
opprabs.4 | ⊢ (𝜑 → · Fn (𝐵 × 𝐵)) |
Ref | Expression |
---|---|
opprabs | ⊢ (𝜑 → 𝑅 = (oppr‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprabs.4 | . . . . . 6 ⊢ (𝜑 → · Fn (𝐵 × 𝐵)) | |
2 | eqid 2740 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | opprabs.m | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
4 | opprabs.o | . . . . . . . . 9 ⊢ 𝑂 = (oppr‘𝑅) | |
5 | eqid 2740 | . . . . . . . . 9 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
6 | 2, 3, 4, 5 | opprmulfval 20362 | . . . . . . . 8 ⊢ (.r‘𝑂) = tpos · |
7 | 6 | tposeqi 8300 | . . . . . . 7 ⊢ tpos (.r‘𝑂) = tpos tpos · |
8 | fnrel 6681 | . . . . . . . 8 ⊢ ( · Fn (𝐵 × 𝐵) → Rel · ) | |
9 | relxp 5718 | . . . . . . . . 9 ⊢ Rel (𝐵 × 𝐵) | |
10 | fndm 6682 | . . . . . . . . . 10 ⊢ ( · Fn (𝐵 × 𝐵) → dom · = (𝐵 × 𝐵)) | |
11 | 10 | releqd 5802 | . . . . . . . . 9 ⊢ ( · Fn (𝐵 × 𝐵) → (Rel dom · ↔ Rel (𝐵 × 𝐵))) |
12 | 9, 11 | mpbiri 258 | . . . . . . . 8 ⊢ ( · Fn (𝐵 × 𝐵) → Rel dom · ) |
13 | tpostpos2 8288 | . . . . . . . 8 ⊢ ((Rel · ∧ Rel dom · ) → tpos tpos · = · ) | |
14 | 8, 12, 13 | syl2anc 583 | . . . . . . 7 ⊢ ( · Fn (𝐵 × 𝐵) → tpos tpos · = · ) |
15 | 7, 14 | eqtrid 2792 | . . . . . 6 ⊢ ( · Fn (𝐵 × 𝐵) → tpos (.r‘𝑂) = · ) |
16 | 1, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → tpos (.r‘𝑂) = · ) |
17 | 16, 3 | eqtrdi 2796 | . . . 4 ⊢ (𝜑 → tpos (.r‘𝑂) = (.r‘𝑅)) |
18 | 17 | opeq2d 4904 | . . 3 ⊢ (𝜑 → 〈(.r‘ndx), tpos (.r‘𝑂)〉 = 〈(.r‘ndx), (.r‘𝑅)〉) |
19 | 18 | oveq2d 7464 | . 2 ⊢ (𝜑 → (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) = (𝑅 sSet 〈(.r‘ndx), (.r‘𝑅)〉)) |
20 | opprabs.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
21 | 4, 2 | opprbas 20367 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑂) |
22 | eqid 2740 | . . . . . 6 ⊢ (oppr‘𝑂) = (oppr‘𝑂) | |
23 | 21, 5, 22 | opprval 20361 | . . . . 5 ⊢ (oppr‘𝑂) = (𝑂 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) |
24 | 2, 3, 4 | opprval 20361 | . . . . . 6 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
25 | 24 | oveq1i 7458 | . . . . 5 ⊢ (𝑂 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) = ((𝑅 sSet 〈(.r‘ndx), tpos · 〉) sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) |
26 | 23, 25 | eqtri 2768 | . . . 4 ⊢ (oppr‘𝑂) = ((𝑅 sSet 〈(.r‘ndx), tpos · 〉) sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) |
27 | fvex 6933 | . . . . . 6 ⊢ (.r‘𝑂) ∈ V | |
28 | 27 | tposex 8301 | . . . . 5 ⊢ tpos (.r‘𝑂) ∈ V |
29 | setsabs 17226 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ tpos (.r‘𝑂) ∈ V) → ((𝑅 sSet 〈(.r‘ndx), tpos · 〉) sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉)) | |
30 | 28, 29 | mpan2 690 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((𝑅 sSet 〈(.r‘ndx), tpos · 〉) sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉) = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉)) |
31 | 26, 30 | eqtrid 2792 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (oppr‘𝑂) = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉)) |
32 | 20, 31 | syl 17 | . 2 ⊢ (𝜑 → (oppr‘𝑂) = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑂)〉)) |
33 | mulridx 17353 | . . 3 ⊢ .r = Slot (.r‘ndx) | |
34 | opprabs.2 | . . 3 ⊢ (𝜑 → Fun 𝑅) | |
35 | opprabs.3 | . . 3 ⊢ (𝜑 → (.r‘ndx) ∈ dom 𝑅) | |
36 | 33, 20, 34, 35 | setsidvald 17246 | . 2 ⊢ (𝜑 → 𝑅 = (𝑅 sSet 〈(.r‘ndx), (.r‘𝑅)〉)) |
37 | 19, 32, 36 | 3eqtr4rd 2791 | 1 ⊢ (𝜑 → 𝑅 = (oppr‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 × cxp 5698 dom cdm 5700 Rel wrel 5705 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 tpos ctpos 8266 sSet csts 17210 ndxcnx 17240 Basecbs 17258 .rcmulr 17312 opprcoppr 20359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-mulr 17325 df-oppr 20360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |