![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mattpos1 | Structured version Visualization version GIF version |
Description: The transposition of the identity matrix is the identity matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
Ref | Expression |
---|---|
mattpos1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mattpos1.o | ⊢ 1 = (1r‘𝐴) |
Ref | Expression |
---|---|
mattpos1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → tpos 1 = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 ⊢ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) | |
2 | 1 | tposmpo 8250 | . . 3 ⊢ tpos (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) = (𝑗 ∈ 𝑁, 𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
3 | mattpos1.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
4 | eqid 2732 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
5 | eqid 2732 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | 3, 4, 5 | mat1 22169 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) |
7 | 6 | tposeqd 8216 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → tpos (1r‘𝐴) = tpos (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) |
8 | 3, 4, 5 | mat1 22169 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑗 ∈ 𝑁, 𝑖 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)))) |
9 | equcom 2021 | . . . . . . 7 ⊢ (𝑗 = 𝑖 ↔ 𝑖 = 𝑗) | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑁 ∧ 𝑖 ∈ 𝑁) → (𝑗 = 𝑖 ↔ 𝑖 = 𝑗)) |
11 | 10 | ifbid 4551 | . . . . 5 ⊢ ((𝑗 ∈ 𝑁 ∧ 𝑖 ∈ 𝑁) → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
12 | 11 | mpoeq3ia 7489 | . . . 4 ⊢ (𝑗 ∈ 𝑁, 𝑖 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) = (𝑗 ∈ 𝑁, 𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
13 | 8, 12 | eqtrdi 2788 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑗 ∈ 𝑁, 𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) |
14 | 2, 7, 13 | 3eqtr4a 2798 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → tpos (1r‘𝐴) = (1r‘𝐴)) |
15 | mattpos1.o | . . 3 ⊢ 1 = (1r‘𝐴) | |
16 | 15 | tposeqi 8246 | . 2 ⊢ tpos 1 = tpos (1r‘𝐴) |
17 | 14, 16, 15 | 3eqtr4g 2797 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → tpos 1 = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ifcif 4528 ‘cfv 6543 (class class class)co 7411 ∈ cmpo 7413 tpos ctpos 8212 Fincfn 8941 0gc0g 17389 1rcur 20075 Ringcrg 20127 Mat cmat 22127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-fzo 13632 df-seq 13971 df-hash 14295 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-hom 17225 df-cco 17226 df-0g 17391 df-gsum 17392 df-prds 17397 df-pws 17399 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18987 df-subg 19039 df-ghm 19128 df-cntz 19222 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-subrg 20459 df-lmod 20616 df-lss 20687 df-sra 20930 df-rgmod 20931 df-dsmm 21506 df-frlm 21521 df-mamu 22106 df-mat 22128 |
This theorem is referenced by: madulid 22367 |
Copyright terms: Public domain | W3C validator |