Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvordtrestixx Structured version   Visualization version   GIF version

Theorem cnvordtrestixx 33859
Description: The restriction of the 'greater than' order to an interval gives the same topology as the subspace topology. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Hypotheses
Ref Expression
cnvordtrestixx.1 𝐴 ⊆ ℝ*
cnvordtrestixx.2 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
Assertion
Ref Expression
cnvordtrestixx ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cnvordtrestixx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lern 18661 . . . . 5 * = ran ≤
2 df-rn 5711 . . . . 5 ran ≤ = dom
31, 2eqtri 2768 . . . 4 * = dom
4 letsr 18663 . . . . . 6 ≤ ∈ TosetRel
5 cnvtsr 18658 . . . . . 6 ( ≤ ∈ TosetRel → ≤ ∈ TosetRel )
64, 5ax-mp 5 . . . . 5 ≤ ∈ TosetRel
76a1i 11 . . . 4 (⊤ → ≤ ∈ TosetRel )
8 cnvordtrestixx.1 . . . . 5 𝐴 ⊆ ℝ*
98a1i 11 . . . 4 (⊤ → 𝐴 ⊆ ℝ*)
10 brcnvg 5904 . . . . . . . . . 10 ((𝑦𝐴𝑧 ∈ ℝ*) → (𝑦𝑧𝑧𝑦))
1110adantlr 714 . . . . . . . . 9 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑦𝑧𝑧𝑦))
12 simpr 484 . . . . . . . . . 10 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑧 ∈ ℝ*)
13 simplr 768 . . . . . . . . . 10 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑥𝐴)
14 brcnvg 5904 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝑥𝐴) → (𝑧𝑥𝑥𝑧))
1512, 13, 14syl2anc 583 . . . . . . . . 9 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑧𝑥𝑥𝑧))
1611, 15anbi12d 631 . . . . . . . 8 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦𝑧𝑧𝑥) ↔ (𝑧𝑦𝑥𝑧)))
17 ancom 460 . . . . . . . 8 ((𝑧𝑦𝑥𝑧) ↔ (𝑥𝑧𝑧𝑦))
1816, 17bitrdi 287 . . . . . . 7 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦𝑧𝑧𝑥) ↔ (𝑥𝑧𝑧𝑦)))
1918rabbidva 3450 . . . . . 6 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
20 simpr 484 . . . . . . . . 9 ((𝑦𝐴𝑥𝐴) → 𝑥𝐴)
218, 20sselid 4006 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → 𝑥 ∈ ℝ*)
22 simpl 482 . . . . . . . . 9 ((𝑦𝐴𝑥𝐴) → 𝑦𝐴)
238, 22sselid 4006 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → 𝑦 ∈ ℝ*)
24 iccval 13446 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
2521, 23, 24syl2anc 583 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
26 cnvordtrestixx.2 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
2726ancoms 458 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
2825, 27eqsstrrd 4048 . . . . . 6 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ⊆ 𝐴)
2919, 28eqsstrd 4047 . . . . 5 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} ⊆ 𝐴)
3029adantl 481 . . . 4 ((⊤ ∧ (𝑦𝐴𝑥𝐴)) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} ⊆ 𝐴)
313, 7, 9, 30ordtrest2 23233 . . 3 (⊤ → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴))
3231mptru 1544 . 2 (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴)
33 tsrps 18657 . . . . 5 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
344, 33ax-mp 5 . . . 4 ≤ ∈ PosetRel
35 ordtcnv 23230 . . . 4 ( ≤ ∈ PosetRel → (ordTop‘ ≤ ) = (ordTop‘ ≤ ))
3634, 35ax-mp 5 . . 3 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
3736oveq1i 7458 . 2 ((ordTop‘ ≤ ) ↾t 𝐴) = ((ordTop‘ ≤ ) ↾t 𝐴)
3832, 37eqtr2i 2769 1 ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  {crab 3443  cin 3975  wss 3976   class class class wbr 5166   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cfv 6573  (class class class)co 7448  *cxr 11323  cle 11325  [,]cicc 13410  t crest 17480  ordTopcordt 17559  PosetRelcps 18634   TosetRel ctsr 18635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-icc 13414  df-rest 17482  df-topgen 17503  df-ordt 17561  df-ps 18636  df-tsr 18637  df-top 22921  df-topon 22938  df-bases 22974
This theorem is referenced by:  xrge0iifhmeo  33882
  Copyright terms: Public domain W3C validator