Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvordtrestixx Structured version   Visualization version   GIF version

Theorem cnvordtrestixx 31183
 Description: The restriction of the 'greater than' order to an interval gives the same topology as the subspace topology. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Hypotheses
Ref Expression
cnvordtrestixx.1 𝐴 ⊆ ℝ*
cnvordtrestixx.2 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
Assertion
Ref Expression
cnvordtrestixx ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cnvordtrestixx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lern 17833 . . . . 5 * = ran ≤
2 df-rn 5554 . . . . 5 ran ≤ = dom
31, 2eqtri 2847 . . . 4 * = dom
4 letsr 17835 . . . . . 6 ≤ ∈ TosetRel
5 cnvtsr 17830 . . . . . 6 ( ≤ ∈ TosetRel → ≤ ∈ TosetRel )
64, 5ax-mp 5 . . . . 5 ≤ ∈ TosetRel
76a1i 11 . . . 4 (⊤ → ≤ ∈ TosetRel )
8 cnvordtrestixx.1 . . . . 5 𝐴 ⊆ ℝ*
98a1i 11 . . . 4 (⊤ → 𝐴 ⊆ ℝ*)
10 brcnvg 5738 . . . . . . . . . 10 ((𝑦𝐴𝑧 ∈ ℝ*) → (𝑦𝑧𝑧𝑦))
1110adantlr 714 . . . . . . . . 9 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑦𝑧𝑧𝑦))
12 simpr 488 . . . . . . . . . 10 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑧 ∈ ℝ*)
13 simplr 768 . . . . . . . . . 10 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑥𝐴)
14 brcnvg 5738 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝑥𝐴) → (𝑧𝑥𝑥𝑧))
1512, 13, 14syl2anc 587 . . . . . . . . 9 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑧𝑥𝑥𝑧))
1611, 15anbi12d 633 . . . . . . . 8 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦𝑧𝑧𝑥) ↔ (𝑧𝑦𝑥𝑧)))
17 ancom 464 . . . . . . . 8 ((𝑧𝑦𝑥𝑧) ↔ (𝑥𝑧𝑧𝑦))
1816, 17syl6bb 290 . . . . . . 7 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦𝑧𝑧𝑥) ↔ (𝑥𝑧𝑧𝑦)))
1918rabbidva 3464 . . . . . 6 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
20 simpr 488 . . . . . . . . 9 ((𝑦𝐴𝑥𝐴) → 𝑥𝐴)
218, 20sseldi 3951 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → 𝑥 ∈ ℝ*)
22 simpl 486 . . . . . . . . 9 ((𝑦𝐴𝑥𝐴) → 𝑦𝐴)
238, 22sseldi 3951 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → 𝑦 ∈ ℝ*)
24 iccval 12772 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
2521, 23, 24syl2anc 587 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
26 cnvordtrestixx.2 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
2726ancoms 462 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
2825, 27eqsstrrd 3992 . . . . . 6 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ⊆ 𝐴)
2919, 28eqsstrd 3991 . . . . 5 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} ⊆ 𝐴)
3029adantl 485 . . . 4 ((⊤ ∧ (𝑦𝐴𝑥𝐴)) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} ⊆ 𝐴)
313, 7, 9, 30ordtrest2 21807 . . 3 (⊤ → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴))
3231mptru 1545 . 2 (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴)
33 tsrps 17829 . . . . 5 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
344, 33ax-mp 5 . . . 4 ≤ ∈ PosetRel
35 ordtcnv 21804 . . . 4 ( ≤ ∈ PosetRel → (ordTop‘ ≤ ) = (ordTop‘ ≤ ))
3634, 35ax-mp 5 . . 3 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
3736oveq1i 7156 . 2 ((ordTop‘ ≤ ) ↾t 𝐴) = ((ordTop‘ ≤ ) ↾t 𝐴)
3832, 37eqtr2i 2848 1 ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  ⊤wtru 1539   ∈ wcel 2115  {crab 3137   ∩ cin 3918   ⊆ wss 3919   class class class wbr 5053   × cxp 5541  ◡ccnv 5542  dom cdm 5543  ran crn 5544  ‘cfv 6344  (class class class)co 7146  ℝ*cxr 10668   ≤ cle 10670  [,]cicc 12736   ↾t crest 16692  ordTopcordt 16770  PosetRelcps 17806   TosetRel ctsr 17807 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fi 8868  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-icc 12740  df-rest 16694  df-topgen 16715  df-ordt 16772  df-ps 17808  df-tsr 17809  df-top 21497  df-topon 21514  df-bases 21549 This theorem is referenced by:  xrge0iifhmeo  31206
 Copyright terms: Public domain W3C validator