Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvordtrestixx Structured version   Visualization version   GIF version

Theorem cnvordtrestixx 33926
Description: The restriction of the 'greater than' order to an interval gives the same topology as the subspace topology. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Hypotheses
Ref Expression
cnvordtrestixx.1 𝐴 ⊆ ℝ*
cnvordtrestixx.2 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
Assertion
Ref Expression
cnvordtrestixx ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cnvordtrestixx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lern 18497 . . . . 5 * = ran ≤
2 df-rn 5625 . . . . 5 ran ≤ = dom
31, 2eqtri 2754 . . . 4 * = dom
4 letsr 18499 . . . . . 6 ≤ ∈ TosetRel
5 cnvtsr 18494 . . . . . 6 ( ≤ ∈ TosetRel → ≤ ∈ TosetRel )
64, 5ax-mp 5 . . . . 5 ≤ ∈ TosetRel
76a1i 11 . . . 4 (⊤ → ≤ ∈ TosetRel )
8 cnvordtrestixx.1 . . . . 5 𝐴 ⊆ ℝ*
98a1i 11 . . . 4 (⊤ → 𝐴 ⊆ ℝ*)
10 brcnvg 5818 . . . . . . . . . 10 ((𝑦𝐴𝑧 ∈ ℝ*) → (𝑦𝑧𝑧𝑦))
1110adantlr 715 . . . . . . . . 9 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑦𝑧𝑧𝑦))
12 simpr 484 . . . . . . . . . 10 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑧 ∈ ℝ*)
13 simplr 768 . . . . . . . . . 10 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑥𝐴)
14 brcnvg 5818 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝑥𝐴) → (𝑧𝑥𝑥𝑧))
1512, 13, 14syl2anc 584 . . . . . . . . 9 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑧𝑥𝑥𝑧))
1611, 15anbi12d 632 . . . . . . . 8 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦𝑧𝑧𝑥) ↔ (𝑧𝑦𝑥𝑧)))
17 ancom 460 . . . . . . . 8 ((𝑧𝑦𝑥𝑧) ↔ (𝑥𝑧𝑧𝑦))
1816, 17bitrdi 287 . . . . . . 7 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦𝑧𝑧𝑥) ↔ (𝑥𝑧𝑧𝑦)))
1918rabbidva 3401 . . . . . 6 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
20 simpr 484 . . . . . . . . 9 ((𝑦𝐴𝑥𝐴) → 𝑥𝐴)
218, 20sselid 3927 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → 𝑥 ∈ ℝ*)
22 simpl 482 . . . . . . . . 9 ((𝑦𝐴𝑥𝐴) → 𝑦𝐴)
238, 22sselid 3927 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → 𝑦 ∈ ℝ*)
24 iccval 13284 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
2521, 23, 24syl2anc 584 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
26 cnvordtrestixx.2 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
2726ancoms 458 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
2825, 27eqsstrrd 3965 . . . . . 6 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ⊆ 𝐴)
2919, 28eqsstrd 3964 . . . . 5 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} ⊆ 𝐴)
3029adantl 481 . . . 4 ((⊤ ∧ (𝑦𝐴𝑥𝐴)) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} ⊆ 𝐴)
313, 7, 9, 30ordtrest2 23119 . . 3 (⊤ → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴))
3231mptru 1548 . 2 (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴)
33 tsrps 18493 . . . . 5 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
344, 33ax-mp 5 . . . 4 ≤ ∈ PosetRel
35 ordtcnv 23116 . . . 4 ( ≤ ∈ PosetRel → (ordTop‘ ≤ ) = (ordTop‘ ≤ ))
3634, 35ax-mp 5 . . 3 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
3736oveq1i 7356 . 2 ((ordTop‘ ≤ ) ↾t 𝐴) = ((ordTop‘ ≤ ) ↾t 𝐴)
3832, 37eqtr2i 2755 1 ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2111  {crab 3395  cin 3896  wss 3897   class class class wbr 5089   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cfv 6481  (class class class)co 7346  *cxr 11145  cle 11147  [,]cicc 13248  t crest 17324  ordTopcordt 17403  PosetRelcps 18470   TosetRel ctsr 18471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-icc 13252  df-rest 17326  df-topgen 17347  df-ordt 17405  df-ps 18472  df-tsr 18473  df-top 22809  df-topon 22826  df-bases 22861
This theorem is referenced by:  xrge0iifhmeo  33949
  Copyright terms: Public domain W3C validator