Step | Hyp | Ref
| Expression |
1 | | lern 18224 |
. . . . 5
⊢
ℝ* = ran ≤ |
2 | | df-rn 5591 |
. . . . 5
⊢ ran ≤
= dom ◡ ≤ |
3 | 1, 2 | eqtri 2766 |
. . . 4
⊢
ℝ* = dom ◡
≤ |
4 | | letsr 18226 |
. . . . . 6
⊢ ≤
∈ TosetRel |
5 | | cnvtsr 18221 |
. . . . . 6
⊢ ( ≤
∈ TosetRel → ◡ ≤ ∈
TosetRel ) |
6 | 4, 5 | ax-mp 5 |
. . . . 5
⊢ ◡ ≤ ∈ TosetRel |
7 | 6 | a1i 11 |
. . . 4
⊢ (⊤
→ ◡ ≤ ∈ TosetRel
) |
8 | | cnvordtrestixx.1 |
. . . . 5
⊢ 𝐴 ⊆
ℝ* |
9 | 8 | a1i 11 |
. . . 4
⊢ (⊤
→ 𝐴 ⊆
ℝ*) |
10 | | brcnvg 5777 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ℝ*) → (𝑦◡ ≤ 𝑧 ↔ 𝑧 ≤ 𝑦)) |
11 | 10 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑦◡ ≤ 𝑧 ↔ 𝑧 ≤ 𝑦)) |
12 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑧 ∈
ℝ*) |
13 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑥 ∈ 𝐴) |
14 | | brcnvg 5777 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ 𝑥 ∈ 𝐴) → (𝑧◡
≤ 𝑥 ↔ 𝑥 ≤ 𝑧)) |
15 | 12, 13, 14 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑧◡ ≤ 𝑥 ↔ 𝑥 ≤ 𝑧)) |
16 | 11, 15 | anbi12d 630 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦◡ ≤ 𝑧 ∧ 𝑧◡
≤ 𝑥) ↔ (𝑧 ≤ 𝑦 ∧ 𝑥 ≤ 𝑧))) |
17 | | ancom 460 |
. . . . . . . 8
⊢ ((𝑧 ≤ 𝑦 ∧ 𝑥 ≤ 𝑧) ↔ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |
18 | 16, 17 | bitrdi 286 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦◡ ≤ 𝑧 ∧ 𝑧◡
≤ 𝑥) ↔ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) |
19 | 18 | rabbidva 3402 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦◡ ≤ 𝑧 ∧ 𝑧◡
≤ 𝑥)} = {𝑧 ∈ ℝ*
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
20 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
21 | 8, 20 | sselid 3915 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
22 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
23 | 8, 22 | sselid 3915 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
24 | | iccval 13047 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
25 | 21, 23, 24 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
26 | | cnvordtrestixx.2 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥[,]𝑦) ⊆ 𝐴) |
27 | 26 | ancoms 458 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥[,]𝑦) ⊆ 𝐴) |
28 | 25, 27 | eqsstrrd 3956 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) |
29 | 19, 28 | eqsstrd 3955 |
. . . . 5
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦◡ ≤ 𝑧 ∧ 𝑧◡
≤ 𝑥)} ⊆ 𝐴) |
30 | 29 | adantl 481 |
. . . 4
⊢
((⊤ ∧ (𝑦
∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → {𝑧 ∈ ℝ* ∣ (𝑦◡ ≤ 𝑧 ∧ 𝑧◡
≤ 𝑥)} ⊆ 𝐴) |
31 | 3, 7, 9, 30 | ordtrest2 22263 |
. . 3
⊢ (⊤
→ (ordTop‘(◡ ≤ ∩
(𝐴 × 𝐴))) = ((ordTop‘◡ ≤ ) ↾t 𝐴)) |
32 | 31 | mptru 1546 |
. 2
⊢
(ordTop‘(◡ ≤ ∩
(𝐴 × 𝐴))) = ((ordTop‘◡ ≤ ) ↾t 𝐴) |
33 | | tsrps 18220 |
. . . . 5
⊢ ( ≤
∈ TosetRel → ≤ ∈ PosetRel) |
34 | 4, 33 | ax-mp 5 |
. . . 4
⊢ ≤
∈ PosetRel |
35 | | ordtcnv 22260 |
. . . 4
⊢ ( ≤
∈ PosetRel → (ordTop‘◡
≤ ) = (ordTop‘ ≤ )) |
36 | 34, 35 | ax-mp 5 |
. . 3
⊢
(ordTop‘◡ ≤ ) =
(ordTop‘ ≤ ) |
37 | 36 | oveq1i 7265 |
. 2
⊢
((ordTop‘◡ ≤ )
↾t 𝐴) =
((ordTop‘ ≤ ) ↾t 𝐴) |
38 | 32, 37 | eqtr2i 2767 |
1
⊢
((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))) |