Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvordtrestixx Structured version   Visualization version   GIF version

Theorem cnvordtrestixx 33903
Description: The restriction of the 'greater than' order to an interval gives the same topology as the subspace topology. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Hypotheses
Ref Expression
cnvordtrestixx.1 𝐴 ⊆ ℝ*
cnvordtrestixx.2 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
Assertion
Ref Expression
cnvordtrestixx ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cnvordtrestixx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lern 18550 . . . . 5 * = ran ≤
2 df-rn 5649 . . . . 5 ran ≤ = dom
31, 2eqtri 2752 . . . 4 * = dom
4 letsr 18552 . . . . . 6 ≤ ∈ TosetRel
5 cnvtsr 18547 . . . . . 6 ( ≤ ∈ TosetRel → ≤ ∈ TosetRel )
64, 5ax-mp 5 . . . . 5 ≤ ∈ TosetRel
76a1i 11 . . . 4 (⊤ → ≤ ∈ TosetRel )
8 cnvordtrestixx.1 . . . . 5 𝐴 ⊆ ℝ*
98a1i 11 . . . 4 (⊤ → 𝐴 ⊆ ℝ*)
10 brcnvg 5843 . . . . . . . . . 10 ((𝑦𝐴𝑧 ∈ ℝ*) → (𝑦𝑧𝑧𝑦))
1110adantlr 715 . . . . . . . . 9 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑦𝑧𝑧𝑦))
12 simpr 484 . . . . . . . . . 10 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑧 ∈ ℝ*)
13 simplr 768 . . . . . . . . . 10 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑥𝐴)
14 brcnvg 5843 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝑥𝐴) → (𝑧𝑥𝑥𝑧))
1512, 13, 14syl2anc 584 . . . . . . . . 9 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑧𝑥𝑥𝑧))
1611, 15anbi12d 632 . . . . . . . 8 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦𝑧𝑧𝑥) ↔ (𝑧𝑦𝑥𝑧)))
17 ancom 460 . . . . . . . 8 ((𝑧𝑦𝑥𝑧) ↔ (𝑥𝑧𝑧𝑦))
1816, 17bitrdi 287 . . . . . . 7 (((𝑦𝐴𝑥𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦𝑧𝑧𝑥) ↔ (𝑥𝑧𝑧𝑦)))
1918rabbidva 3412 . . . . . 6 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
20 simpr 484 . . . . . . . . 9 ((𝑦𝐴𝑥𝐴) → 𝑥𝐴)
218, 20sselid 3944 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → 𝑥 ∈ ℝ*)
22 simpl 482 . . . . . . . . 9 ((𝑦𝐴𝑥𝐴) → 𝑦𝐴)
238, 22sselid 3944 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → 𝑦 ∈ ℝ*)
24 iccval 13345 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
2521, 23, 24syl2anc 584 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
26 cnvordtrestixx.2 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
2726ancoms 458 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑥[,]𝑦) ⊆ 𝐴)
2825, 27eqsstrrd 3982 . . . . . 6 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)} ⊆ 𝐴)
2919, 28eqsstrd 3981 . . . . 5 ((𝑦𝐴𝑥𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} ⊆ 𝐴)
3029adantl 481 . . . 4 ((⊤ ∧ (𝑦𝐴𝑥𝐴)) → {𝑧 ∈ ℝ* ∣ (𝑦𝑧𝑧𝑥)} ⊆ 𝐴)
313, 7, 9, 30ordtrest2 23091 . . 3 (⊤ → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴))
3231mptru 1547 . 2 (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴)
33 tsrps 18546 . . . . 5 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
344, 33ax-mp 5 . . . 4 ≤ ∈ PosetRel
35 ordtcnv 23088 . . . 4 ( ≤ ∈ PosetRel → (ordTop‘ ≤ ) = (ordTop‘ ≤ ))
3634, 35ax-mp 5 . . 3 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
3736oveq1i 7397 . 2 ((ordTop‘ ≤ ) ↾t 𝐴) = ((ordTop‘ ≤ ) ↾t 𝐴)
3832, 37eqtr2i 2753 1 ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  {crab 3405  cin 3913  wss 3914   class class class wbr 5107   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cfv 6511  (class class class)co 7387  *cxr 11207  cle 11209  [,]cicc 13309  t crest 17383  ordTopcordt 17462  PosetRelcps 18523   TosetRel ctsr 18524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-icc 13313  df-rest 17385  df-topgen 17406  df-ordt 17464  df-ps 18525  df-tsr 18526  df-top 22781  df-topon 22798  df-bases 22833
This theorem is referenced by:  xrge0iifhmeo  33926
  Copyright terms: Public domain W3C validator