| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0iifhmeo | Structured version Visualization version GIF version | ||
| Description: Expose a homeomorphism from the closed unit interval to the extended nonnegative reals. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
| Ref | Expression |
|---|---|
| xrge0iifhmeo.1 | ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
| xrge0iifhmeo.k | ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
| Ref | Expression |
|---|---|
| xrge0iifhmeo | ⊢ 𝐹 ∈ (IIHomeo𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letsr 18499 | . . . . . 6 ⊢ ≤ ∈ TosetRel | |
| 2 | tsrps 18493 | . . . . . 6 ⊢ ( ≤ ∈ TosetRel → ≤ ∈ PosetRel) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ≤ ∈ PosetRel |
| 4 | 3 | elexi 3459 | . . . 4 ⊢ ≤ ∈ V |
| 5 | 4 | inex1 5256 | . . 3 ⊢ ( ≤ ∩ ((0[,]1) × (0[,]1))) ∈ V |
| 6 | cnvps 18484 | . . . . . 6 ⊢ ( ≤ ∈ PosetRel → ◡ ≤ ∈ PosetRel) | |
| 7 | 3, 6 | ax-mp 5 | . . . . 5 ⊢ ◡ ≤ ∈ PosetRel |
| 8 | 7 | elexi 3459 | . . . 4 ⊢ ◡ ≤ ∈ V |
| 9 | 8 | inex1 5256 | . . 3 ⊢ (◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞))) ∈ V |
| 10 | xrge0iifhmeo.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) | |
| 11 | 10 | xrge0iifiso 33902 | . . . . . 6 ⊢ 𝐹 Isom < , ◡ < ((0[,]1), (0[,]+∞)) |
| 12 | iccssxr 13333 | . . . . . . 7 ⊢ (0[,]1) ⊆ ℝ* | |
| 13 | iccssxr 13333 | . . . . . . 7 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 14 | gtiso 32643 | . . . . . . 7 ⊢ (((0[,]1) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) → (𝐹 Isom < , ◡ < ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ◡ ≤ ((0[,]1), (0[,]+∞)))) | |
| 15 | 12, 13, 14 | mp2an 692 | . . . . . 6 ⊢ (𝐹 Isom < , ◡ < ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ◡ ≤ ((0[,]1), (0[,]+∞))) |
| 16 | 11, 15 | mpbi 230 | . . . . 5 ⊢ 𝐹 Isom ≤ , ◡ ≤ ((0[,]1), (0[,]+∞)) |
| 17 | isores1 7271 | . . . . 5 ⊢ (𝐹 Isom ≤ , ◡ ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ◡ ≤ ((0[,]1), (0[,]+∞))) | |
| 18 | 16, 17 | mpbi 230 | . . . 4 ⊢ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ◡ ≤ ((0[,]1), (0[,]+∞)) |
| 19 | isores2 7270 | . . . 4 ⊢ (𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ◡ ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), (◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞))) | |
| 20 | 18, 19 | mpbi 230 | . . 3 ⊢ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), (◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞)) |
| 21 | ledm 18496 | . . . . . . 7 ⊢ ℝ* = dom ≤ | |
| 22 | 21 | psssdm 18488 | . . . . . 6 ⊢ (( ≤ ∈ PosetRel ∧ (0[,]1) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1)) |
| 23 | 3, 12, 22 | mp2an 692 | . . . . 5 ⊢ dom ( ≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1) |
| 24 | 23 | eqcomi 2738 | . . . 4 ⊢ (0[,]1) = dom ( ≤ ∩ ((0[,]1) × (0[,]1))) |
| 25 | lern 18497 | . . . . . . . 8 ⊢ ℝ* = ran ≤ | |
| 26 | df-rn 5630 | . . . . . . . 8 ⊢ ran ≤ = dom ◡ ≤ | |
| 27 | 25, 26 | eqtri 2752 | . . . . . . 7 ⊢ ℝ* = dom ◡ ≤ |
| 28 | 27 | psssdm 18488 | . . . . . 6 ⊢ ((◡ ≤ ∈ PosetRel ∧ (0[,]+∞) ⊆ ℝ*) → dom (◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞))) = (0[,]+∞)) |
| 29 | 7, 13, 28 | mp2an 692 | . . . . 5 ⊢ dom (◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞))) = (0[,]+∞) |
| 30 | 29 | eqcomi 2738 | . . . 4 ⊢ (0[,]+∞) = dom (◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞))) |
| 31 | 24, 30 | ordthmeo 23687 | . . 3 ⊢ ((( ≤ ∩ ((0[,]1) × (0[,]1))) ∈ V ∧ (◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞))) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), (◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞))) → 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘(◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞)))))) |
| 32 | 5, 9, 20, 31 | mp3an 1463 | . 2 ⊢ 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘(◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞))))) |
| 33 | dfii5 24776 | . . 3 ⊢ II = (ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1)))) | |
| 34 | xrge0iifhmeo.k | . . . 4 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
| 35 | iccss2 13320 | . . . . 5 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥[,]𝑦) ⊆ (0[,]+∞)) | |
| 36 | 13, 35 | cnvordtrestixx 33880 | . . . 4 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (ordTop‘(◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞)))) |
| 37 | 34, 36 | eqtri 2752 | . . 3 ⊢ 𝐽 = (ordTop‘(◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞)))) |
| 38 | 33, 37 | oveq12i 7361 | . 2 ⊢ (IIHomeo𝐽) = ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘(◡ ≤ ∩ ((0[,]+∞) × (0[,]+∞))))) |
| 39 | 32, 38 | eleqtrri 2827 | 1 ⊢ 𝐹 ∈ (IIHomeo𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 ifcif 4476 ↦ cmpt 5173 × cxp 5617 ◡ccnv 5618 dom cdm 5619 ran crn 5620 ‘cfv 6482 Isom wiso 6483 (class class class)co 7349 0cc0 11009 1c1 11010 +∞cpnf 11146 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 -cneg 11348 [,]cicc 13251 ↾t crest 17324 ordTopcordt 17403 PosetRelcps 18470 TosetRel ctsr 18471 Homeochmeo 23638 IIcii 24766 logclog 26461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-ordt 17405 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-ps 18472 df-tsr 18473 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-ii 24768 df-cncf 24769 df-limc 25765 df-dv 25766 df-log 26463 |
| This theorem is referenced by: xrge0pluscn 33907 xrge0tmd 33912 |
| Copyright terms: Public domain | W3C validator |