![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0iifhmeo | Structured version Visualization version GIF version |
Description: Expose a homeomorphism from the closed unit interval to the extended nonnegative reals. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
Ref | Expression |
---|---|
xrge0iifhmeo.1 | β’ πΉ = (π₯ β (0[,]1) β¦ if(π₯ = 0, +β, -(logβπ₯))) |
xrge0iifhmeo.k | β’ π½ = ((ordTopβ β€ ) βΎt (0[,]+β)) |
Ref | Expression |
---|---|
xrge0iifhmeo | β’ πΉ β (IIHomeoπ½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letsr 18551 | . . . . . 6 β’ β€ β TosetRel | |
2 | tsrps 18545 | . . . . . 6 β’ ( β€ β TosetRel β β€ β PosetRel) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 β’ β€ β PosetRel |
4 | 3 | elexi 3493 | . . . 4 β’ β€ β V |
5 | 4 | inex1 5317 | . . 3 β’ ( β€ β© ((0[,]1) Γ (0[,]1))) β V |
6 | cnvps 18536 | . . . . . 6 β’ ( β€ β PosetRel β β‘ β€ β PosetRel) | |
7 | 3, 6 | ax-mp 5 | . . . . 5 β’ β‘ β€ β PosetRel |
8 | 7 | elexi 3493 | . . . 4 β’ β‘ β€ β V |
9 | 8 | inex1 5317 | . . 3 β’ (β‘ β€ β© ((0[,]+β) Γ (0[,]+β))) β V |
10 | xrge0iifhmeo.1 | . . . . . . 7 β’ πΉ = (π₯ β (0[,]1) β¦ if(π₯ = 0, +β, -(logβπ₯))) | |
11 | 10 | xrge0iifiso 33214 | . . . . . 6 β’ πΉ Isom < , β‘ < ((0[,]1), (0[,]+β)) |
12 | iccssxr 13412 | . . . . . . 7 β’ (0[,]1) β β* | |
13 | iccssxr 13412 | . . . . . . 7 β’ (0[,]+β) β β* | |
14 | gtiso 32190 | . . . . . . 7 β’ (((0[,]1) β β* β§ (0[,]+β) β β*) β (πΉ Isom < , β‘ < ((0[,]1), (0[,]+β)) β πΉ Isom β€ , β‘ β€ ((0[,]1), (0[,]+β)))) | |
15 | 12, 13, 14 | mp2an 689 | . . . . . 6 β’ (πΉ Isom < , β‘ < ((0[,]1), (0[,]+β)) β πΉ Isom β€ , β‘ β€ ((0[,]1), (0[,]+β))) |
16 | 11, 15 | mpbi 229 | . . . . 5 β’ πΉ Isom β€ , β‘ β€ ((0[,]1), (0[,]+β)) |
17 | isores1 7334 | . . . . 5 β’ (πΉ Isom β€ , β‘ β€ ((0[,]1), (0[,]+β)) β πΉ Isom ( β€ β© ((0[,]1) Γ (0[,]1))), β‘ β€ ((0[,]1), (0[,]+β))) | |
18 | 16, 17 | mpbi 229 | . . . 4 β’ πΉ Isom ( β€ β© ((0[,]1) Γ (0[,]1))), β‘ β€ ((0[,]1), (0[,]+β)) |
19 | isores2 7333 | . . . 4 β’ (πΉ Isom ( β€ β© ((0[,]1) Γ (0[,]1))), β‘ β€ ((0[,]1), (0[,]+β)) β πΉ Isom ( β€ β© ((0[,]1) Γ (0[,]1))), (β‘ β€ β© ((0[,]+β) Γ (0[,]+β)))((0[,]1), (0[,]+β))) | |
20 | 18, 19 | mpbi 229 | . . 3 β’ πΉ Isom ( β€ β© ((0[,]1) Γ (0[,]1))), (β‘ β€ β© ((0[,]+β) Γ (0[,]+β)))((0[,]1), (0[,]+β)) |
21 | ledm 18548 | . . . . . . 7 β’ β* = dom β€ | |
22 | 21 | psssdm 18540 | . . . . . 6 β’ (( β€ β PosetRel β§ (0[,]1) β β*) β dom ( β€ β© ((0[,]1) Γ (0[,]1))) = (0[,]1)) |
23 | 3, 12, 22 | mp2an 689 | . . . . 5 β’ dom ( β€ β© ((0[,]1) Γ (0[,]1))) = (0[,]1) |
24 | 23 | eqcomi 2740 | . . . 4 β’ (0[,]1) = dom ( β€ β© ((0[,]1) Γ (0[,]1))) |
25 | lern 18549 | . . . . . . . 8 β’ β* = ran β€ | |
26 | df-rn 5687 | . . . . . . . 8 β’ ran β€ = dom β‘ β€ | |
27 | 25, 26 | eqtri 2759 | . . . . . . 7 β’ β* = dom β‘ β€ |
28 | 27 | psssdm 18540 | . . . . . 6 β’ ((β‘ β€ β PosetRel β§ (0[,]+β) β β*) β dom (β‘ β€ β© ((0[,]+β) Γ (0[,]+β))) = (0[,]+β)) |
29 | 7, 13, 28 | mp2an 689 | . . . . 5 β’ dom (β‘ β€ β© ((0[,]+β) Γ (0[,]+β))) = (0[,]+β) |
30 | 29 | eqcomi 2740 | . . . 4 β’ (0[,]+β) = dom (β‘ β€ β© ((0[,]+β) Γ (0[,]+β))) |
31 | 24, 30 | ordthmeo 23527 | . . 3 β’ ((( β€ β© ((0[,]1) Γ (0[,]1))) β V β§ (β‘ β€ β© ((0[,]+β) Γ (0[,]+β))) β V β§ πΉ Isom ( β€ β© ((0[,]1) Γ (0[,]1))), (β‘ β€ β© ((0[,]+β) Γ (0[,]+β)))((0[,]1), (0[,]+β))) β πΉ β ((ordTopβ( β€ β© ((0[,]1) Γ (0[,]1))))Homeo(ordTopβ(β‘ β€ β© ((0[,]+β) Γ (0[,]+β)))))) |
32 | 5, 9, 20, 31 | mp3an 1460 | . 2 β’ πΉ β ((ordTopβ( β€ β© ((0[,]1) Γ (0[,]1))))Homeo(ordTopβ(β‘ β€ β© ((0[,]+β) Γ (0[,]+β))))) |
33 | dfii5 24626 | . . 3 β’ II = (ordTopβ( β€ β© ((0[,]1) Γ (0[,]1)))) | |
34 | xrge0iifhmeo.k | . . . 4 β’ π½ = ((ordTopβ β€ ) βΎt (0[,]+β)) | |
35 | iccss2 13400 | . . . . 5 β’ ((π₯ β (0[,]+β) β§ π¦ β (0[,]+β)) β (π₯[,]π¦) β (0[,]+β)) | |
36 | 13, 35 | cnvordtrestixx 33192 | . . . 4 β’ ((ordTopβ β€ ) βΎt (0[,]+β)) = (ordTopβ(β‘ β€ β© ((0[,]+β) Γ (0[,]+β)))) |
37 | 34, 36 | eqtri 2759 | . . 3 β’ π½ = (ordTopβ(β‘ β€ β© ((0[,]+β) Γ (0[,]+β)))) |
38 | 33, 37 | oveq12i 7424 | . 2 β’ (IIHomeoπ½) = ((ordTopβ( β€ β© ((0[,]1) Γ (0[,]1))))Homeo(ordTopβ(β‘ β€ β© ((0[,]+β) Γ (0[,]+β))))) |
39 | 32, 38 | eleqtrri 2831 | 1 β’ πΉ β (IIHomeoπ½) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1540 β wcel 2105 Vcvv 3473 β© cin 3947 β wss 3948 ifcif 4528 β¦ cmpt 5231 Γ cxp 5674 β‘ccnv 5675 dom cdm 5676 ran crn 5677 βcfv 6543 Isom wiso 6544 (class class class)co 7412 0cc0 11114 1c1 11115 +βcpnf 11250 β*cxr 11252 < clt 11253 β€ cle 11254 -cneg 11450 [,]cicc 13332 βΎt crest 17371 ordTopcordt 17450 PosetRelcps 18522 TosetRel ctsr 18523 Homeochmeo 23478 IIcii 24616 logclog 26300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ioc 13334 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15019 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-limsup 15420 df-clim 15437 df-rlim 15438 df-sum 15638 df-ef 16016 df-sin 16018 df-cos 16019 df-pi 16021 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-ordt 17452 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-ps 18524 df-tsr 18525 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-lp 22861 df-perf 22862 df-cn 22952 df-cnp 22953 df-haus 23040 df-tx 23287 df-hmeo 23480 df-fil 23571 df-fm 23663 df-flim 23664 df-flf 23665 df-xms 24047 df-ms 24048 df-tms 24049 df-ii 24618 df-cncf 24619 df-limc 25616 df-dv 25617 df-log 26302 |
This theorem is referenced by: xrge0pluscn 33219 xrge0tmd 33224 |
Copyright terms: Public domain | W3C validator |