MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbas2 Structured version   Visualization version   GIF version

Theorem ordtbas2 22250
Description: Lemma for ordtbas 22251. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
ordtval.3 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
ordtval.4 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
Assertion
Ref Expression
ordtbas2 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑥,𝑎,𝑦,𝑅,𝑏   𝑋,𝑎,𝑏,𝑥,𝑦   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem ordtbas2
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 4102 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
2 ssun2 4103 . . . . . . 7 (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))
3 ordtval.1 . . . . . . . . . 10 𝑋 = dom 𝑅
4 ordtval.2 . . . . . . . . . 10 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
5 ordtval.3 . . . . . . . . . 10 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
63, 4, 5ordtuni 22249 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 = ({𝑋} ∪ (𝐴𝐵)))
7 dmexg 7724 . . . . . . . . . 10 (𝑅 ∈ TosetRel → dom 𝑅 ∈ V)
83, 7eqeltrid 2843 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 ∈ V)
96, 8eqeltrrd 2840 . . . . . . . 8 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
10 uniexb 7592 . . . . . . . 8 (({𝑋} ∪ (𝐴𝐵)) ∈ V ↔ ({𝑋} ∪ (𝐴𝐵)) ∈ V)
119, 10sylibr 233 . . . . . . 7 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
12 ssexg 5242 . . . . . . 7 (((𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵)) ∧ ({𝑋} ∪ (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
132, 11, 12sylancr 586 . . . . . 6 (𝑅 ∈ TosetRel → (𝐴𝐵) ∈ V)
14 ssexg 5242 . . . . . 6 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐴 ∈ V)
151, 13, 14sylancr 586 . . . . 5 (𝑅 ∈ TosetRel → 𝐴 ∈ V)
16 ssun2 4103 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
17 ssexg 5242 . . . . . 6 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐵 ∈ V)
1816, 13, 17sylancr 586 . . . . 5 (𝑅 ∈ TosetRel → 𝐵 ∈ V)
19 elfiun 9119 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑧 ∈ (fi‘(𝐴𝐵)) ↔ (𝑧 ∈ (fi‘𝐴) ∨ 𝑧 ∈ (fi‘𝐵) ∨ ∃𝑚 ∈ (fi‘𝐴)∃𝑛 ∈ (fi‘𝐵)𝑧 = (𝑚𝑛))))
2015, 18, 19syl2anc 583 . . . 4 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘(𝐴𝐵)) ↔ (𝑧 ∈ (fi‘𝐴) ∨ 𝑧 ∈ (fi‘𝐵) ∨ ∃𝑚 ∈ (fi‘𝐴)∃𝑛 ∈ (fi‘𝐵)𝑧 = (𝑚𝑛))))
213, 4ordtbaslem 22247 . . . . . . . 8 (𝑅 ∈ TosetRel → (fi‘𝐴) = 𝐴)
2221, 1eqsstrdi 3971 . . . . . . 7 (𝑅 ∈ TosetRel → (fi‘𝐴) ⊆ (𝐴𝐵))
23 ssun1 4102 . . . . . . 7 (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ 𝐶)
2422, 23sstrdi 3929 . . . . . 6 (𝑅 ∈ TosetRel → (fi‘𝐴) ⊆ ((𝐴𝐵) ∪ 𝐶))
2524sseld 3916 . . . . 5 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘𝐴) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
26 cnvtsr 18221 . . . . . . . . . 10 (𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )
27 df-rn 5591 . . . . . . . . . . 11 ran 𝑅 = dom 𝑅
28 eqid 2738 . . . . . . . . . . 11 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})
2927, 28ordtbaslem 22247 . . . . . . . . . 10 (𝑅 ∈ TosetRel → (fi‘ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
3026, 29syl 17 . . . . . . . . 9 (𝑅 ∈ TosetRel → (fi‘ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
31 tsrps 18220 . . . . . . . . . . . . . 14 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
323psrn 18208 . . . . . . . . . . . . . 14 (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅)
3331, 32syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → 𝑋 = ran 𝑅)
34 vex 3426 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
35 vex 3426 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
3634, 35brcnv 5780 . . . . . . . . . . . . . . . . 17 (𝑦𝑅𝑥𝑥𝑅𝑦)
3736bicomi 223 . . . . . . . . . . . . . . . 16 (𝑥𝑅𝑦𝑦𝑅𝑥)
3837notbii 319 . . . . . . . . . . . . . . 15 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥)
3938a1i 11 . . . . . . . . . . . . . 14 (𝑅 ∈ TosetRel → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
4033, 39rabeqbidv 3410 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})
4133, 40mpteq12dv 5161 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
4241rneqd 5836 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
435, 42eqtrid 2790 . . . . . . . . . 10 (𝑅 ∈ TosetRel → 𝐵 = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
4443fveq2d 6760 . . . . . . . . 9 (𝑅 ∈ TosetRel → (fi‘𝐵) = (fi‘ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})))
4530, 44, 433eqtr4d 2788 . . . . . . . 8 (𝑅 ∈ TosetRel → (fi‘𝐵) = 𝐵)
4645, 16eqsstrdi 3971 . . . . . . 7 (𝑅 ∈ TosetRel → (fi‘𝐵) ⊆ (𝐴𝐵))
4746, 23sstrdi 3929 . . . . . 6 (𝑅 ∈ TosetRel → (fi‘𝐵) ⊆ ((𝐴𝐵) ∪ 𝐶))
4847sseld 3916 . . . . 5 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘𝐵) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
49 ssun2 4103 . . . . . . . 8 𝐶 ⊆ ((𝐴𝐵) ∪ 𝐶)
5021, 4eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑅 ∈ TosetRel → (fi‘𝐴) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
5150eleq2d 2824 . . . . . . . . . . . . . 14 (𝑅 ∈ TosetRel → (𝑚 ∈ (fi‘𝐴) ↔ 𝑚 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})))
52 breq2 5074 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝑦𝑅𝑥𝑦𝑅𝑎))
5352notbid 317 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑎))
5453rabbidv 3404 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
5554cbvmptv 5183 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑎𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
5655elrnmpt 5854 . . . . . . . . . . . . . . 15 (𝑚 ∈ V → (𝑚 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎}))
5756elv 3428 . . . . . . . . . . . . . 14 (𝑚 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
5851, 57bitrdi 286 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → (𝑚 ∈ (fi‘𝐴) ↔ ∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎}))
5945, 5eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑅 ∈ TosetRel → (fi‘𝐵) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
6059eleq2d 2824 . . . . . . . . . . . . . 14 (𝑅 ∈ TosetRel → (𝑛 ∈ (fi‘𝐵) ↔ 𝑛 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))
61 breq1 5073 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑏 → (𝑥𝑅𝑦𝑏𝑅𝑦))
6261notbid 317 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑏 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑏𝑅𝑦))
6362rabbidv 3404 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑏 → {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})
6463cbvmptv 5183 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = (𝑏𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})
6564elrnmpt 5854 . . . . . . . . . . . . . . 15 (𝑛 ∈ V → (𝑛 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
6665elv 3428 . . . . . . . . . . . . . 14 (𝑛 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})
6760, 66bitrdi 286 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → (𝑛 ∈ (fi‘𝐵) ↔ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
6858, 67anbi12d 630 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → ((𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵)) ↔ (∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})))
69 reeanv 3292 . . . . . . . . . . . . 13 (∃𝑎𝑋𝑏𝑋 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) ↔ (∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
70 ineq12 4138 . . . . . . . . . . . . . . . 16 ((𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → (𝑚𝑛) = ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
71 inrab 4237 . . . . . . . . . . . . . . . 16 ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}
7270, 71eqtrdi 2795 . . . . . . . . . . . . . . 15 ((𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
7372reximi 3174 . . . . . . . . . . . . . 14 (∃𝑏𝑋 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → ∃𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
7473reximi 3174 . . . . . . . . . . . . 13 (∃𝑎𝑋𝑏𝑋 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
7569, 74sylbir 234 . . . . . . . . . . . 12 ((∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
7668, 75syl6bi 252 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → ((𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵)) → ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}))
7776imp 406 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
78 vex 3426 . . . . . . . . . . . 12 𝑚 ∈ V
7978inex1 5236 . . . . . . . . . . 11 (𝑚𝑛) ∈ V
80 eqid 2738 . . . . . . . . . . . 12 (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) = (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
8180elrnmpog 7387 . . . . . . . . . . 11 ((𝑚𝑛) ∈ V → ((𝑚𝑛) ∈ ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}))
8279, 81ax-mp 5 . . . . . . . . . 10 ((𝑚𝑛) ∈ ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
8377, 82sylibr 233 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → (𝑚𝑛) ∈ ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}))
84 ordtval.4 . . . . . . . . 9 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
8583, 84eleqtrrdi 2850 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → (𝑚𝑛) ∈ 𝐶)
8649, 85sselid 3915 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → (𝑚𝑛) ∈ ((𝐴𝐵) ∪ 𝐶))
87 eleq1 2826 . . . . . . 7 (𝑧 = (𝑚𝑛) → (𝑧 ∈ ((𝐴𝐵) ∪ 𝐶) ↔ (𝑚𝑛) ∈ ((𝐴𝐵) ∪ 𝐶)))
8886, 87syl5ibrcom 246 . . . . . 6 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → (𝑧 = (𝑚𝑛) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
8988rexlimdvva 3222 . . . . 5 (𝑅 ∈ TosetRel → (∃𝑚 ∈ (fi‘𝐴)∃𝑛 ∈ (fi‘𝐵)𝑧 = (𝑚𝑛) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
9025, 48, 893jaod 1426 . . . 4 (𝑅 ∈ TosetRel → ((𝑧 ∈ (fi‘𝐴) ∨ 𝑧 ∈ (fi‘𝐵) ∨ ∃𝑚 ∈ (fi‘𝐴)∃𝑛 ∈ (fi‘𝐵)𝑧 = (𝑚𝑛)) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
9120, 90sylbid 239 . . 3 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘(𝐴𝐵)) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
9291ssrdv 3923 . 2 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ 𝐶))
93 ssfii 9108 . . . 4 ((𝐴𝐵) ∈ V → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
9413, 93syl 17 . . 3 (𝑅 ∈ TosetRel → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
9594adantr 480 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
96 simprl 767 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → 𝑎𝑋)
97 eqidd 2739 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
9854rspceeqv 3567 . . . . . . . . . . . . . 14 ((𝑎𝑋 ∧ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎}) → ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
9996, 97, 98syl2anc 583 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
1008adantr 480 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → 𝑋 ∈ V)
101 rabexg 5250 . . . . . . . . . . . . . 14 (𝑋 ∈ V → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V)
102 eqid 2738 . . . . . . . . . . . . . . 15 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
103102elrnmpt 5854 . . . . . . . . . . . . . 14 ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
104100, 101, 1033syl 18 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
10599, 104mpbird 256 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
106105, 4eleqtrrdi 2850 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ 𝐴)
1071, 106sselid 3915 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ (𝐴𝐵))
10895, 107sseldd 3918 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ (fi‘(𝐴𝐵)))
109 simprr 769 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → 𝑏𝑋)
110 eqidd 2739 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})
11163rspceeqv 3567 . . . . . . . . . . . . . 14 ((𝑏𝑋 ∧ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
112109, 110, 111syl2anc 583 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
113 rabexg 5250 . . . . . . . . . . . . . 14 (𝑋 ∈ V → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ V)
114 eqid 2738 . . . . . . . . . . . . . . 15 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
115114elrnmpt 5854 . . . . . . . . . . . . . 14 ({𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ V → ({𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
116100, 113, 1153syl 18 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ({𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
117112, 116mpbird 256 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
118117, 5eleqtrrdi 2850 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ 𝐵)
11916, 118sselid 3915 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ (𝐴𝐵))
12095, 119sseldd 3918 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ (fi‘(𝐴𝐵)))
121 fiin 9111 . . . . . . . . 9 (({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ (fi‘(𝐴𝐵)) ∧ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ (fi‘(𝐴𝐵))) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) ∈ (fi‘(𝐴𝐵)))
122108, 120, 121syl2anc 583 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) ∈ (fi‘(𝐴𝐵)))
12371, 122eqeltrrid 2844 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)} ∈ (fi‘(𝐴𝐵)))
124123ralrimivva 3114 . . . . . 6 (𝑅 ∈ TosetRel → ∀𝑎𝑋𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)} ∈ (fi‘(𝐴𝐵)))
12580fmpo 7881 . . . . . 6 (∀𝑎𝑋𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)} ∈ (fi‘(𝐴𝐵)) ↔ (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}):(𝑋 × 𝑋)⟶(fi‘(𝐴𝐵)))
126124, 125sylib 217 . . . . 5 (𝑅 ∈ TosetRel → (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}):(𝑋 × 𝑋)⟶(fi‘(𝐴𝐵)))
127126frnd 6592 . . . 4 (𝑅 ∈ TosetRel → ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ⊆ (fi‘(𝐴𝐵)))
12884, 127eqsstrid 3965 . . 3 (𝑅 ∈ TosetRel → 𝐶 ⊆ (fi‘(𝐴𝐵)))
12994, 128unssd 4116 . 2 (𝑅 ∈ TosetRel → ((𝐴𝐵) ∪ 𝐶) ⊆ (fi‘(𝐴𝐵)))
13092, 129eqssd 3934 1 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3o 1084   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cun 3881  cin 3882  wss 3883  {csn 4558   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  wf 6414  cfv 6418  cmpo 7257  ficfi 9099  PosetRelcps 18197   TosetRel ctsr 18198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-fin 8695  df-fi 9100  df-ps 18199  df-tsr 18200
This theorem is referenced by:  ordtbas  22251  leordtval  22272
  Copyright terms: Public domain W3C validator