MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbas2 Structured version   Visualization version   GIF version

Theorem ordtbas2 23094
Description: Lemma for ordtbas 23095. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
ordtval.3 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
ordtval.4 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
Assertion
Ref Expression
ordtbas2 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑥,𝑎,𝑦,𝑅,𝑏   𝑋,𝑎,𝑏,𝑥,𝑦   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem ordtbas2
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 4131 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
2 ssun2 4132 . . . . . . 7 (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))
3 ordtval.1 . . . . . . . . . 10 𝑋 = dom 𝑅
4 ordtval.2 . . . . . . . . . 10 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
5 ordtval.3 . . . . . . . . . 10 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
63, 4, 5ordtuni 23093 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 = ({𝑋} ∪ (𝐴𝐵)))
7 dmexg 7841 . . . . . . . . . 10 (𝑅 ∈ TosetRel → dom 𝑅 ∈ V)
83, 7eqeltrid 2832 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 ∈ V)
96, 8eqeltrrd 2829 . . . . . . . 8 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
10 uniexb 7704 . . . . . . . 8 (({𝑋} ∪ (𝐴𝐵)) ∈ V ↔ ({𝑋} ∪ (𝐴𝐵)) ∈ V)
119, 10sylibr 234 . . . . . . 7 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
12 ssexg 5265 . . . . . . 7 (((𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵)) ∧ ({𝑋} ∪ (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
132, 11, 12sylancr 587 . . . . . 6 (𝑅 ∈ TosetRel → (𝐴𝐵) ∈ V)
14 ssexg 5265 . . . . . 6 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐴 ∈ V)
151, 13, 14sylancr 587 . . . . 5 (𝑅 ∈ TosetRel → 𝐴 ∈ V)
16 ssun2 4132 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
17 ssexg 5265 . . . . . 6 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐵 ∈ V)
1816, 13, 17sylancr 587 . . . . 5 (𝑅 ∈ TosetRel → 𝐵 ∈ V)
19 elfiun 9339 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑧 ∈ (fi‘(𝐴𝐵)) ↔ (𝑧 ∈ (fi‘𝐴) ∨ 𝑧 ∈ (fi‘𝐵) ∨ ∃𝑚 ∈ (fi‘𝐴)∃𝑛 ∈ (fi‘𝐵)𝑧 = (𝑚𝑛))))
2015, 18, 19syl2anc 584 . . . 4 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘(𝐴𝐵)) ↔ (𝑧 ∈ (fi‘𝐴) ∨ 𝑧 ∈ (fi‘𝐵) ∨ ∃𝑚 ∈ (fi‘𝐴)∃𝑛 ∈ (fi‘𝐵)𝑧 = (𝑚𝑛))))
213, 4ordtbaslem 23091 . . . . . . . 8 (𝑅 ∈ TosetRel → (fi‘𝐴) = 𝐴)
2221, 1eqsstrdi 3982 . . . . . . 7 (𝑅 ∈ TosetRel → (fi‘𝐴) ⊆ (𝐴𝐵))
23 ssun1 4131 . . . . . . 7 (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ 𝐶)
2422, 23sstrdi 3950 . . . . . 6 (𝑅 ∈ TosetRel → (fi‘𝐴) ⊆ ((𝐴𝐵) ∪ 𝐶))
2524sseld 3936 . . . . 5 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘𝐴) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
26 cnvtsr 18512 . . . . . . . . . 10 (𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )
27 df-rn 5634 . . . . . . . . . . 11 ran 𝑅 = dom 𝑅
28 eqid 2729 . . . . . . . . . . 11 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})
2927, 28ordtbaslem 23091 . . . . . . . . . 10 (𝑅 ∈ TosetRel → (fi‘ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
3026, 29syl 17 . . . . . . . . 9 (𝑅 ∈ TosetRel → (fi‘ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
31 tsrps 18511 . . . . . . . . . . . . . 14 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
323psrn 18499 . . . . . . . . . . . . . 14 (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅)
3331, 32syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → 𝑋 = ran 𝑅)
34 vex 3442 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
35 vex 3442 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
3634, 35brcnv 5829 . . . . . . . . . . . . . . . . 17 (𝑦𝑅𝑥𝑥𝑅𝑦)
3736bicomi 224 . . . . . . . . . . . . . . . 16 (𝑥𝑅𝑦𝑦𝑅𝑥)
3837notbii 320 . . . . . . . . . . . . . . 15 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥)
3938a1i 11 . . . . . . . . . . . . . 14 (𝑅 ∈ TosetRel → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
4033, 39rabeqbidv 3415 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})
4133, 40mpteq12dv 5182 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
4241rneqd 5884 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
435, 42eqtrid 2776 . . . . . . . . . 10 (𝑅 ∈ TosetRel → 𝐵 = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
4443fveq2d 6830 . . . . . . . . 9 (𝑅 ∈ TosetRel → (fi‘𝐵) = (fi‘ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})))
4530, 44, 433eqtr4d 2774 . . . . . . . 8 (𝑅 ∈ TosetRel → (fi‘𝐵) = 𝐵)
4645, 16eqsstrdi 3982 . . . . . . 7 (𝑅 ∈ TosetRel → (fi‘𝐵) ⊆ (𝐴𝐵))
4746, 23sstrdi 3950 . . . . . 6 (𝑅 ∈ TosetRel → (fi‘𝐵) ⊆ ((𝐴𝐵) ∪ 𝐶))
4847sseld 3936 . . . . 5 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘𝐵) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
49 ssun2 4132 . . . . . . . 8 𝐶 ⊆ ((𝐴𝐵) ∪ 𝐶)
5021, 4eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑅 ∈ TosetRel → (fi‘𝐴) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
5150eleq2d 2814 . . . . . . . . . . . . . 14 (𝑅 ∈ TosetRel → (𝑚 ∈ (fi‘𝐴) ↔ 𝑚 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})))
52 breq2 5099 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝑦𝑅𝑥𝑦𝑅𝑎))
5352notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑎))
5453rabbidv 3404 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
5554cbvmptv 5199 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑎𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
5655elrnmpt 5904 . . . . . . . . . . . . . . 15 (𝑚 ∈ V → (𝑚 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎}))
5756elv 3443 . . . . . . . . . . . . . 14 (𝑚 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
5851, 57bitrdi 287 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → (𝑚 ∈ (fi‘𝐴) ↔ ∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎}))
5945, 5eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑅 ∈ TosetRel → (fi‘𝐵) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
6059eleq2d 2814 . . . . . . . . . . . . . 14 (𝑅 ∈ TosetRel → (𝑛 ∈ (fi‘𝐵) ↔ 𝑛 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})))
61 breq1 5098 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑏 → (𝑥𝑅𝑦𝑏𝑅𝑦))
6261notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑏 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑏𝑅𝑦))
6362rabbidv 3404 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑏 → {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})
6463cbvmptv 5199 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = (𝑏𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})
6564elrnmpt 5904 . . . . . . . . . . . . . . 15 (𝑛 ∈ V → (𝑛 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
6665elv 3443 . . . . . . . . . . . . . 14 (𝑛 ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})
6760, 66bitrdi 287 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → (𝑛 ∈ (fi‘𝐵) ↔ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
6858, 67anbi12d 632 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → ((𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵)) ↔ (∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})))
69 reeanv 3201 . . . . . . . . . . . . 13 (∃𝑎𝑋𝑏𝑋 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) ↔ (∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
70 ineq12 4168 . . . . . . . . . . . . . . . 16 ((𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → (𝑚𝑛) = ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}))
71 inrab 4269 . . . . . . . . . . . . . . . 16 ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}
7270, 71eqtrdi 2780 . . . . . . . . . . . . . . 15 ((𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
7372reximi 3067 . . . . . . . . . . . . . 14 (∃𝑏𝑋 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → ∃𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
7473reximi 3067 . . . . . . . . . . . . 13 (∃𝑎𝑋𝑏𝑋 (𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
7569, 74sylbir 235 . . . . . . . . . . . 12 ((∃𝑎𝑋 𝑚 = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∧ ∃𝑏𝑋 𝑛 = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
7668, 75biimtrdi 253 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → ((𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵)) → ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}))
7776imp 406 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
78 vex 3442 . . . . . . . . . . . 12 𝑚 ∈ V
7978inex1 5259 . . . . . . . . . . 11 (𝑚𝑛) ∈ V
80 eqid 2729 . . . . . . . . . . . 12 (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) = (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
8180elrnmpog 7488 . . . . . . . . . . 11 ((𝑚𝑛) ∈ V → ((𝑚𝑛) ∈ ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}))
8279, 81ax-mp 5 . . . . . . . . . 10 ((𝑚𝑛) ∈ ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑚𝑛) = {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
8377, 82sylibr 234 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → (𝑚𝑛) ∈ ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}))
84 ordtval.4 . . . . . . . . 9 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
8583, 84eleqtrrdi 2839 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → (𝑚𝑛) ∈ 𝐶)
8649, 85sselid 3935 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → (𝑚𝑛) ∈ ((𝐴𝐵) ∪ 𝐶))
87 eleq1 2816 . . . . . . 7 (𝑧 = (𝑚𝑛) → (𝑧 ∈ ((𝐴𝐵) ∪ 𝐶) ↔ (𝑚𝑛) ∈ ((𝐴𝐵) ∪ 𝐶)))
8886, 87syl5ibrcom 247 . . . . . 6 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘𝐴) ∧ 𝑛 ∈ (fi‘𝐵))) → (𝑧 = (𝑚𝑛) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
8988rexlimdvva 3186 . . . . 5 (𝑅 ∈ TosetRel → (∃𝑚 ∈ (fi‘𝐴)∃𝑛 ∈ (fi‘𝐵)𝑧 = (𝑚𝑛) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
9025, 48, 893jaod 1431 . . . 4 (𝑅 ∈ TosetRel → ((𝑧 ∈ (fi‘𝐴) ∨ 𝑧 ∈ (fi‘𝐵) ∨ ∃𝑚 ∈ (fi‘𝐴)∃𝑛 ∈ (fi‘𝐵)𝑧 = (𝑚𝑛)) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
9120, 90sylbid 240 . . 3 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘(𝐴𝐵)) → 𝑧 ∈ ((𝐴𝐵) ∪ 𝐶)))
9291ssrdv 3943 . 2 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ 𝐶))
93 ssfii 9328 . . . 4 ((𝐴𝐵) ∈ V → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
9413, 93syl 17 . . 3 (𝑅 ∈ TosetRel → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
9594adantr 480 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
96 simprl 770 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → 𝑎𝑋)
97 eqidd 2730 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎})
9854rspceeqv 3602 . . . . . . . . . . . . . 14 ((𝑎𝑋 ∧ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎}) → ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
9996, 97, 98syl2anc 584 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
1008adantr 480 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → 𝑋 ∈ V)
101 rabexg 5279 . . . . . . . . . . . . . 14 (𝑋 ∈ V → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V)
102 eqid 2729 . . . . . . . . . . . . . . 15 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
103102elrnmpt 5904 . . . . . . . . . . . . . 14 ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ V → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
104100, 101, 1033syl 18 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
10599, 104mpbird 257 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
106105, 4eleqtrrdi 2839 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ 𝐴)
1071, 106sselid 3935 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ (𝐴𝐵))
10895, 107sseldd 3938 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ (fi‘(𝐴𝐵)))
109 simprr 772 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → 𝑏𝑋)
110 eqidd 2730 . . . . . . . . . . . . . 14 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦})
11163rspceeqv 3602 . . . . . . . . . . . . . 14 ((𝑏𝑋 ∧ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) → ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
112109, 110, 111syl2anc 584 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
113 rabexg 5279 . . . . . . . . . . . . . 14 (𝑋 ∈ V → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ V)
114 eqid 2729 . . . . . . . . . . . . . . 15 (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
115114elrnmpt 5904 . . . . . . . . . . . . . 14 ({𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ V → ({𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
116100, 113, 1153syl 18 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ({𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑥𝑋 {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
117112, 116mpbird 257 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
118117, 5eleqtrrdi 2839 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ 𝐵)
11916, 118sselid 3935 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ (𝐴𝐵))
12095, 119sseldd 3938 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ (fi‘(𝐴𝐵)))
121 fiin 9331 . . . . . . . . 9 (({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∈ (fi‘(𝐴𝐵)) ∧ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦} ∈ (fi‘(𝐴𝐵))) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) ∈ (fi‘(𝐴𝐵)))
122108, 120, 121syl2anc 584 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑎} ∩ {𝑦𝑋 ∣ ¬ 𝑏𝑅𝑦}) ∈ (fi‘(𝐴𝐵)))
12371, 122eqeltrrid 2833 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑎𝑋𝑏𝑋)) → {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)} ∈ (fi‘(𝐴𝐵)))
124123ralrimivva 3172 . . . . . 6 (𝑅 ∈ TosetRel → ∀𝑎𝑋𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)} ∈ (fi‘(𝐴𝐵)))
12580fmpo 8010 . . . . . 6 (∀𝑎𝑋𝑏𝑋 {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)} ∈ (fi‘(𝐴𝐵)) ↔ (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}):(𝑋 × 𝑋)⟶(fi‘(𝐴𝐵)))
126124, 125sylib 218 . . . . 5 (𝑅 ∈ TosetRel → (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}):(𝑋 × 𝑋)⟶(fi‘(𝐴𝐵)))
127126frnd 6664 . . . 4 (𝑅 ∈ TosetRel → ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ⊆ (fi‘(𝐴𝐵)))
12884, 127eqsstrid 3976 . . 3 (𝑅 ∈ TosetRel → 𝐶 ⊆ (fi‘(𝐴𝐵)))
12994, 128unssd 4145 . 2 (𝑅 ∈ TosetRel → ((𝐴𝐵) ∪ 𝐶) ⊆ (fi‘(𝐴𝐵)))
13092, 129eqssd 3955 1 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cun 3903  cin 3904  wss 3905  {csn 4579   cuni 4861   class class class wbr 5095  cmpt 5176   × cxp 5621  ccnv 5622  dom cdm 5623  ran crn 5624  wf 6482  cfv 6486  cmpo 7355  ficfi 9319  PosetRelcps 18488   TosetRel ctsr 18489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-1o 8395  df-2o 8396  df-en 8880  df-fin 8883  df-fi 9320  df-ps 18490  df-tsr 18491
This theorem is referenced by:  ordtbas  23095  leordtval  23116
  Copyright terms: Public domain W3C validator