Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfhmeo Structured version   Visualization version   GIF version

Theorem icopnfhmeo 23551
 Description: The defined bijection from [0, 1) to [0, +∞) is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
icopnfhmeo.f 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
icopnfhmeo.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
icopnfhmeo (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ∧ 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))))
Distinct variable group:   𝑥,𝐽
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icopnfhmeo
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icopnfhmeo.f . . . . 5 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
21icopnfcnv 23550 . . . 4 (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
32simpli 487 . . 3 𝐹:(0[,)1)–1-1-onto→(0[,)+∞)
4 0re 10636 . . . . . . . . . . 11 0 ∈ ℝ
5 1xr 10693 . . . . . . . . . . 11 1 ∈ ℝ*
6 elico2 12793 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1)))
74, 5, 6mp2an 691 . . . . . . . . . 10 (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1))
87simp1bi 1142 . . . . . . . . 9 (𝑥 ∈ (0[,)1) → 𝑥 ∈ ℝ)
98ssriv 3922 . . . . . . . 8 (0[,)1) ⊆ ℝ
109sseli 3914 . . . . . . 7 (𝑧 ∈ (0[,)1) → 𝑧 ∈ ℝ)
1110adantr 484 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑧 ∈ ℝ)
12 elico2 12793 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑤 ∈ (0[,)1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < 1)))
134, 5, 12mp2an 691 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < 1))
1413simp3bi 1144 . . . . . . . . 9 (𝑤 ∈ (0[,)1) → 𝑤 < 1)
159sseli 3914 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) → 𝑤 ∈ ℝ)
16 1re 10634 . . . . . . . . . 10 1 ∈ ℝ
17 difrp 12419 . . . . . . . . . 10 ((𝑤 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑤 < 1 ↔ (1 − 𝑤) ∈ ℝ+))
1815, 16, 17sylancl 589 . . . . . . . . 9 (𝑤 ∈ (0[,)1) → (𝑤 < 1 ↔ (1 − 𝑤) ∈ ℝ+))
1914, 18mpbid 235 . . . . . . . 8 (𝑤 ∈ (0[,)1) → (1 − 𝑤) ∈ ℝ+)
2019rpregt0d 12429 . . . . . . 7 (𝑤 ∈ (0[,)1) → ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤)))
2120adantl 485 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤)))
2215adantl 485 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑤 ∈ ℝ)
23 elico2 12793 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑧 ∈ (0[,)1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 < 1)))
244, 5, 23mp2an 691 . . . . . . . . . 10 (𝑧 ∈ (0[,)1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 < 1))
2524simp3bi 1144 . . . . . . . . 9 (𝑧 ∈ (0[,)1) → 𝑧 < 1)
26 difrp 12419 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑧 < 1 ↔ (1 − 𝑧) ∈ ℝ+))
2710, 16, 26sylancl 589 . . . . . . . . 9 (𝑧 ∈ (0[,)1) → (𝑧 < 1 ↔ (1 − 𝑧) ∈ ℝ+))
2825, 27mpbid 235 . . . . . . . 8 (𝑧 ∈ (0[,)1) → (1 − 𝑧) ∈ ℝ+)
2928adantr 484 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (1 − 𝑧) ∈ ℝ+)
3029rpregt0d 12429 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((1 − 𝑧) ∈ ℝ ∧ 0 < (1 − 𝑧)))
31 lt2mul2div 11511 . . . . . 6 (((𝑧 ∈ ℝ ∧ ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤))) ∧ (𝑤 ∈ ℝ ∧ ((1 − 𝑧) ∈ ℝ ∧ 0 < (1 − 𝑧)))) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
3211, 21, 22, 30, 31syl22anc 837 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
3311, 22remulcld 10664 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · 𝑤) ∈ ℝ)
3411, 22, 33ltsub1d 11242 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝑧 − (𝑧 · 𝑤)) < (𝑤 − (𝑧 · 𝑤))))
3511recnd 10662 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑧 ∈ ℂ)
36 1cnd 10629 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 1 ∈ ℂ)
3722recnd 10662 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑤 ∈ ℂ)
3835, 36, 37subdid 11089 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · (1 − 𝑤)) = ((𝑧 · 1) − (𝑧 · 𝑤)))
3935mulid1d 10651 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · 1) = 𝑧)
4039oveq1d 7154 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · 1) − (𝑧 · 𝑤)) = (𝑧 − (𝑧 · 𝑤)))
4138, 40eqtrd 2836 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · (1 − 𝑤)) = (𝑧 − (𝑧 · 𝑤)))
4237, 36, 35subdid 11089 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · (1 − 𝑧)) = ((𝑤 · 1) − (𝑤 · 𝑧)))
4337mulid1d 10651 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · 1) = 𝑤)
4437, 35mulcomd 10655 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · 𝑧) = (𝑧 · 𝑤))
4543, 44oveq12d 7157 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑤 · 1) − (𝑤 · 𝑧)) = (𝑤 − (𝑧 · 𝑤)))
4642, 45eqtrd 2836 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · (1 − 𝑧)) = (𝑤 − (𝑧 · 𝑤)))
4741, 46breq12d 5046 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 − (𝑧 · 𝑤)) < (𝑤 − (𝑧 · 𝑤))))
4834, 47bitr4d 285 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧))))
49 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
50 oveq2 7147 . . . . . . . 8 (𝑥 = 𝑧 → (1 − 𝑥) = (1 − 𝑧))
5149, 50oveq12d 7157 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 / (1 − 𝑥)) = (𝑧 / (1 − 𝑧)))
52 ovex 7172 . . . . . . 7 (𝑧 / (1 − 𝑧)) ∈ V
5351, 1, 52fvmpt 6749 . . . . . 6 (𝑧 ∈ (0[,)1) → (𝐹𝑧) = (𝑧 / (1 − 𝑧)))
54 id 22 . . . . . . . 8 (𝑥 = 𝑤𝑥 = 𝑤)
55 oveq2 7147 . . . . . . . 8 (𝑥 = 𝑤 → (1 − 𝑥) = (1 − 𝑤))
5654, 55oveq12d 7157 . . . . . . 7 (𝑥 = 𝑤 → (𝑥 / (1 − 𝑥)) = (𝑤 / (1 − 𝑤)))
57 ovex 7172 . . . . . . 7 (𝑤 / (1 − 𝑤)) ∈ V
5856, 1, 57fvmpt 6749 . . . . . 6 (𝑤 ∈ (0[,)1) → (𝐹𝑤) = (𝑤 / (1 − 𝑤)))
5953, 58breqan12d 5049 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝐹𝑧) < (𝐹𝑤) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
6032, 48, 593bitr4d 314 . . . 4 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤)))
6160rgen2 3171 . . 3 𝑧 ∈ (0[,)1)∀𝑤 ∈ (0[,)1)(𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤))
62 df-isom 6337 . . 3 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ ∀𝑧 ∈ (0[,)1)∀𝑤 ∈ (0[,)1)(𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤))))
633, 61, 62mpbir2an 710 . 2 𝐹 Isom < , < ((0[,)1), (0[,)+∞))
64 letsr 17832 . . . . . 6 ≤ ∈ TosetRel
6564elexi 3463 . . . . 5 ≤ ∈ V
6665inex1 5188 . . . 4 ( ≤ ∩ ((0[,)1) × (0[,)1))) ∈ V
6765inex1 5188 . . . 4 ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) ∈ V
68 icossxr 12814 . . . . . . . 8 (0[,)1) ⊆ ℝ*
69 icossxr 12814 . . . . . . . 8 (0[,)+∞) ⊆ ℝ*
70 leiso 13817 . . . . . . . 8 (((0[,)1) ⊆ ℝ* ∧ (0[,)+∞) ⊆ ℝ*) → (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞))))
7168, 69, 70mp2an 691 . . . . . . 7 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞)))
7263, 71mpbi 233 . . . . . 6 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞))
73 isores1 7070 . . . . . 6 (𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞)))
7472, 73mpbi 233 . . . . 5 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞))
75 isores2 7069 . . . . 5 (𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞)))
7674, 75mpbi 233 . . . 4 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞))
77 tsrps 17826 . . . . . . . 8 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
7864, 77ax-mp 5 . . . . . . 7 ≤ ∈ PosetRel
79 ledm 17829 . . . . . . . 8 * = dom ≤
8079psssdm 17821 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,)1) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,)1) × (0[,)1))) = (0[,)1))
8178, 68, 80mp2an 691 . . . . . 6 dom ( ≤ ∩ ((0[,)1) × (0[,)1))) = (0[,)1)
8281eqcomi 2810 . . . . 5 (0[,)1) = dom ( ≤ ∩ ((0[,)1) × (0[,)1)))
8379psssdm 17821 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,)+∞) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) = (0[,)+∞))
8478, 69, 83mp2an 691 . . . . . 6 dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) = (0[,)+∞)
8584eqcomi 2810 . . . . 5 (0[,)+∞) = dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))
8682, 85ordthmeo 22410 . . . 4 ((( ≤ ∩ ((0[,)1) × (0[,)1))) ∈ V ∧ ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞))) → 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))))
8766, 67, 76, 86mp3an 1458 . . 3 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))))
88 icopnfhmeo.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
89 eqid 2801 . . . . . . 7 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
9088, 89xrrest2 23416 . . . . . 6 ((0[,)1) ⊆ ℝ → (𝐽t (0[,)1)) = ((ordTop‘ ≤ ) ↾t (0[,)1)))
919, 90ax-mp 5 . . . . 5 (𝐽t (0[,)1)) = ((ordTop‘ ≤ ) ↾t (0[,)1))
92 iccssico2 12803 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)1)) → (𝑥[,]𝑦) ⊆ (0[,)1))
9368, 92ordtrestixx 21830 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,)1)) = (ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))
9491, 93eqtri 2824 . . . 4 (𝐽t (0[,)1)) = (ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))
95 rge0ssre 12838 . . . . . 6 (0[,)+∞) ⊆ ℝ
9688, 89xrrest2 23416 . . . . . 6 ((0[,)+∞) ⊆ ℝ → (𝐽t (0[,)+∞)) = ((ordTop‘ ≤ ) ↾t (0[,)+∞)))
9795, 96ax-mp 5 . . . . 5 (𝐽t (0[,)+∞)) = ((ordTop‘ ≤ ) ↾t (0[,)+∞))
98 iccssico2 12803 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥[,]𝑦) ⊆ (0[,)+∞))
9969, 98ordtrestixx 21830 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,)+∞)) = (ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))
10097, 99eqtri 2824 . . . 4 (𝐽t (0[,)+∞)) = (ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))
10194, 100oveq12i 7151 . . 3 ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))) = ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))))
10287, 101eleqtrri 2892 . 2 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞)))
10363, 102pm3.2i 474 1 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ∧ 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∀wral 3109  Vcvv 3444   ∩ cin 3883   ⊆ wss 3884   class class class wbr 5033   ↦ cmpt 5113   × cxp 5521  ◡ccnv 5522  dom cdm 5523  –1-1-onto→wf1o 6327  ‘cfv 6328   Isom wiso 6329  (class class class)co 7139  ℝcr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  +∞cpnf 10665  ℝ*cxr 10667   < clt 10668   ≤ cle 10669   − cmin 10863   / cdiv 11290  ℝ+crp 12381  [,)cico 12732   ↾t crest 16689  TopOpenctopn 16690  ordTopcordt 16767  PosetRelcps 17803   TosetRel ctsr 17804  ℂfldccnfld 20094  Homeochmeo 22361 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-plusg 16573  df-mulr 16574  df-starv 16575  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-rest 16691  df-topn 16692  df-topgen 16712  df-ordt 16769  df-ps 17805  df-tsr 17806  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-cnfld 20095  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-hmeo 22363  df-xms 22930  df-ms 22931 This theorem is referenced by:  iccpnfhmeo  23553
 Copyright terms: Public domain W3C validator