MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfhmeo Structured version   Visualization version   GIF version

Theorem icopnfhmeo 24874
Description: The defined bijection from [0, 1) to [0, +∞) is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
icopnfhmeo.f 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
icopnfhmeo.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
icopnfhmeo (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ∧ 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))))
Distinct variable group:   𝑥,𝐽
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icopnfhmeo
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icopnfhmeo.f . . . . 5 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
21icopnfcnv 24873 . . . 4 (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
32simpli 483 . . 3 𝐹:(0[,)1)–1-1-onto→(0[,)+∞)
4 0re 11152 . . . . . . . . . . 11 0 ∈ ℝ
5 1xr 11209 . . . . . . . . . . 11 1 ∈ ℝ*
6 elico2 13347 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1)))
74, 5, 6mp2an 692 . . . . . . . . . 10 (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1))
87simp1bi 1145 . . . . . . . . 9 (𝑥 ∈ (0[,)1) → 𝑥 ∈ ℝ)
98ssriv 3947 . . . . . . . 8 (0[,)1) ⊆ ℝ
109sseli 3939 . . . . . . 7 (𝑧 ∈ (0[,)1) → 𝑧 ∈ ℝ)
1110adantr 480 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑧 ∈ ℝ)
12 elico2 13347 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑤 ∈ (0[,)1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < 1)))
134, 5, 12mp2an 692 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < 1))
1413simp3bi 1147 . . . . . . . . 9 (𝑤 ∈ (0[,)1) → 𝑤 < 1)
159sseli 3939 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) → 𝑤 ∈ ℝ)
16 1re 11150 . . . . . . . . . 10 1 ∈ ℝ
17 difrp 12967 . . . . . . . . . 10 ((𝑤 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑤 < 1 ↔ (1 − 𝑤) ∈ ℝ+))
1815, 16, 17sylancl 586 . . . . . . . . 9 (𝑤 ∈ (0[,)1) → (𝑤 < 1 ↔ (1 − 𝑤) ∈ ℝ+))
1914, 18mpbid 232 . . . . . . . 8 (𝑤 ∈ (0[,)1) → (1 − 𝑤) ∈ ℝ+)
2019rpregt0d 12977 . . . . . . 7 (𝑤 ∈ (0[,)1) → ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤)))
2120adantl 481 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤)))
2215adantl 481 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑤 ∈ ℝ)
23 elico2 13347 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑧 ∈ (0[,)1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 < 1)))
244, 5, 23mp2an 692 . . . . . . . . . 10 (𝑧 ∈ (0[,)1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 < 1))
2524simp3bi 1147 . . . . . . . . 9 (𝑧 ∈ (0[,)1) → 𝑧 < 1)
26 difrp 12967 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑧 < 1 ↔ (1 − 𝑧) ∈ ℝ+))
2710, 16, 26sylancl 586 . . . . . . . . 9 (𝑧 ∈ (0[,)1) → (𝑧 < 1 ↔ (1 − 𝑧) ∈ ℝ+))
2825, 27mpbid 232 . . . . . . . 8 (𝑧 ∈ (0[,)1) → (1 − 𝑧) ∈ ℝ+)
2928adantr 480 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (1 − 𝑧) ∈ ℝ+)
3029rpregt0d 12977 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((1 − 𝑧) ∈ ℝ ∧ 0 < (1 − 𝑧)))
31 lt2mul2div 12037 . . . . . 6 (((𝑧 ∈ ℝ ∧ ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤))) ∧ (𝑤 ∈ ℝ ∧ ((1 − 𝑧) ∈ ℝ ∧ 0 < (1 − 𝑧)))) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
3211, 21, 22, 30, 31syl22anc 838 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
3311, 22remulcld 11180 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · 𝑤) ∈ ℝ)
3411, 22, 33ltsub1d 11763 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝑧 − (𝑧 · 𝑤)) < (𝑤 − (𝑧 · 𝑤))))
3511recnd 11178 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑧 ∈ ℂ)
36 1cnd 11145 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 1 ∈ ℂ)
3722recnd 11178 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑤 ∈ ℂ)
3835, 36, 37subdid 11610 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · (1 − 𝑤)) = ((𝑧 · 1) − (𝑧 · 𝑤)))
3935mulridd 11167 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · 1) = 𝑧)
4039oveq1d 7384 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · 1) − (𝑧 · 𝑤)) = (𝑧 − (𝑧 · 𝑤)))
4138, 40eqtrd 2764 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · (1 − 𝑤)) = (𝑧 − (𝑧 · 𝑤)))
4237, 36, 35subdid 11610 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · (1 − 𝑧)) = ((𝑤 · 1) − (𝑤 · 𝑧)))
4337mulridd 11167 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · 1) = 𝑤)
4437, 35mulcomd 11171 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · 𝑧) = (𝑧 · 𝑤))
4543, 44oveq12d 7387 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑤 · 1) − (𝑤 · 𝑧)) = (𝑤 − (𝑧 · 𝑤)))
4642, 45eqtrd 2764 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · (1 − 𝑧)) = (𝑤 − (𝑧 · 𝑤)))
4741, 46breq12d 5115 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 − (𝑧 · 𝑤)) < (𝑤 − (𝑧 · 𝑤))))
4834, 47bitr4d 282 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧))))
49 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
50 oveq2 7377 . . . . . . . 8 (𝑥 = 𝑧 → (1 − 𝑥) = (1 − 𝑧))
5149, 50oveq12d 7387 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 / (1 − 𝑥)) = (𝑧 / (1 − 𝑧)))
52 ovex 7402 . . . . . . 7 (𝑧 / (1 − 𝑧)) ∈ V
5351, 1, 52fvmpt 6950 . . . . . 6 (𝑧 ∈ (0[,)1) → (𝐹𝑧) = (𝑧 / (1 − 𝑧)))
54 id 22 . . . . . . . 8 (𝑥 = 𝑤𝑥 = 𝑤)
55 oveq2 7377 . . . . . . . 8 (𝑥 = 𝑤 → (1 − 𝑥) = (1 − 𝑤))
5654, 55oveq12d 7387 . . . . . . 7 (𝑥 = 𝑤 → (𝑥 / (1 − 𝑥)) = (𝑤 / (1 − 𝑤)))
57 ovex 7402 . . . . . . 7 (𝑤 / (1 − 𝑤)) ∈ V
5856, 1, 57fvmpt 6950 . . . . . 6 (𝑤 ∈ (0[,)1) → (𝐹𝑤) = (𝑤 / (1 − 𝑤)))
5953, 58breqan12d 5118 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝐹𝑧) < (𝐹𝑤) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
6032, 48, 593bitr4d 311 . . . 4 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤)))
6160rgen2 3175 . . 3 𝑧 ∈ (0[,)1)∀𝑤 ∈ (0[,)1)(𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤))
62 df-isom 6508 . . 3 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ ∀𝑧 ∈ (0[,)1)∀𝑤 ∈ (0[,)1)(𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤))))
633, 61, 62mpbir2an 711 . 2 𝐹 Isom < , < ((0[,)1), (0[,)+∞))
64 letsr 18534 . . . . . 6 ≤ ∈ TosetRel
6564elexi 3467 . . . . 5 ≤ ∈ V
6665inex1 5267 . . . 4 ( ≤ ∩ ((0[,)1) × (0[,)1))) ∈ V
6765inex1 5267 . . . 4 ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) ∈ V
68 icossxr 13369 . . . . . . . 8 (0[,)1) ⊆ ℝ*
69 icossxr 13369 . . . . . . . 8 (0[,)+∞) ⊆ ℝ*
70 leiso 14400 . . . . . . . 8 (((0[,)1) ⊆ ℝ* ∧ (0[,)+∞) ⊆ ℝ*) → (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞))))
7168, 69, 70mp2an 692 . . . . . . 7 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞)))
7263, 71mpbi 230 . . . . . 6 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞))
73 isores1 7291 . . . . . 6 (𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞)))
7472, 73mpbi 230 . . . . 5 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞))
75 isores2 7290 . . . . 5 (𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞)))
7674, 75mpbi 230 . . . 4 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞))
77 tsrps 18528 . . . . . . . 8 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
7864, 77ax-mp 5 . . . . . . 7 ≤ ∈ PosetRel
79 ledm 18531 . . . . . . . 8 * = dom ≤
8079psssdm 18523 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,)1) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,)1) × (0[,)1))) = (0[,)1))
8178, 68, 80mp2an 692 . . . . . 6 dom ( ≤ ∩ ((0[,)1) × (0[,)1))) = (0[,)1)
8281eqcomi 2738 . . . . 5 (0[,)1) = dom ( ≤ ∩ ((0[,)1) × (0[,)1)))
8379psssdm 18523 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,)+∞) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) = (0[,)+∞))
8478, 69, 83mp2an 692 . . . . . 6 dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) = (0[,)+∞)
8584eqcomi 2738 . . . . 5 (0[,)+∞) = dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))
8682, 85ordthmeo 23722 . . . 4 ((( ≤ ∩ ((0[,)1) × (0[,)1))) ∈ V ∧ ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞))) → 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))))
8766, 67, 76, 86mp3an 1463 . . 3 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))))
88 icopnfhmeo.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
89 eqid 2729 . . . . . . 7 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
9088, 89xrrest2 24730 . . . . . 6 ((0[,)1) ⊆ ℝ → (𝐽t (0[,)1)) = ((ordTop‘ ≤ ) ↾t (0[,)1)))
919, 90ax-mp 5 . . . . 5 (𝐽t (0[,)1)) = ((ordTop‘ ≤ ) ↾t (0[,)1))
92 iccssico2 13357 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)1)) → (𝑥[,]𝑦) ⊆ (0[,)1))
9368, 92ordtrestixx 23142 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,)1)) = (ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))
9491, 93eqtri 2752 . . . 4 (𝐽t (0[,)1)) = (ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))
95 rge0ssre 13393 . . . . . 6 (0[,)+∞) ⊆ ℝ
9688, 89xrrest2 24730 . . . . . 6 ((0[,)+∞) ⊆ ℝ → (𝐽t (0[,)+∞)) = ((ordTop‘ ≤ ) ↾t (0[,)+∞)))
9795, 96ax-mp 5 . . . . 5 (𝐽t (0[,)+∞)) = ((ordTop‘ ≤ ) ↾t (0[,)+∞))
98 iccssico2 13357 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥[,]𝑦) ⊆ (0[,)+∞))
9969, 98ordtrestixx 23142 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,)+∞)) = (ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))
10097, 99eqtri 2752 . . . 4 (𝐽t (0[,)+∞)) = (ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))
10194, 100oveq12i 7381 . . 3 ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))) = ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))))
10287, 101eleqtrri 2827 . 2 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞)))
10363, 102pm3.2i 470 1 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ∧ 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cin 3910  wss 3911   class class class wbr 5102  cmpt 5183   × cxp 5629  ccnv 5630  dom cdm 5631  1-1-ontowf1o 6498  cfv 6499   Isom wiso 6500  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  +crp 12927  [,)cico 13284  t crest 17359  TopOpenctopn 17360  ordTopcordt 17438  PosetRelcps 18505   TosetRel ctsr 18506  fldccnfld 21296  Homeochmeo 23673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-ordt 17440  df-ps 18507  df-tsr 18508  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cn 23147  df-hmeo 23675  df-xms 24241  df-ms 24242
This theorem is referenced by:  iccpnfhmeo  24876
  Copyright terms: Public domain W3C validator