MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfhmeo Structured version   Visualization version   GIF version

Theorem icopnfhmeo 24974
Description: The defined bijection from [0, 1) to [0, +∞) is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
icopnfhmeo.f 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
icopnfhmeo.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
icopnfhmeo (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ∧ 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))))
Distinct variable group:   𝑥,𝐽
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icopnfhmeo
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icopnfhmeo.f . . . . 5 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
21icopnfcnv 24973 . . . 4 (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
32simpli 483 . . 3 𝐹:(0[,)1)–1-1-onto→(0[,)+∞)
4 0re 11263 . . . . . . . . . . 11 0 ∈ ℝ
5 1xr 11320 . . . . . . . . . . 11 1 ∈ ℝ*
6 elico2 13451 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1)))
74, 5, 6mp2an 692 . . . . . . . . . 10 (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1))
87simp1bi 1146 . . . . . . . . 9 (𝑥 ∈ (0[,)1) → 𝑥 ∈ ℝ)
98ssriv 3987 . . . . . . . 8 (0[,)1) ⊆ ℝ
109sseli 3979 . . . . . . 7 (𝑧 ∈ (0[,)1) → 𝑧 ∈ ℝ)
1110adantr 480 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑧 ∈ ℝ)
12 elico2 13451 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑤 ∈ (0[,)1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < 1)))
134, 5, 12mp2an 692 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < 1))
1413simp3bi 1148 . . . . . . . . 9 (𝑤 ∈ (0[,)1) → 𝑤 < 1)
159sseli 3979 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) → 𝑤 ∈ ℝ)
16 1re 11261 . . . . . . . . . 10 1 ∈ ℝ
17 difrp 13073 . . . . . . . . . 10 ((𝑤 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑤 < 1 ↔ (1 − 𝑤) ∈ ℝ+))
1815, 16, 17sylancl 586 . . . . . . . . 9 (𝑤 ∈ (0[,)1) → (𝑤 < 1 ↔ (1 − 𝑤) ∈ ℝ+))
1914, 18mpbid 232 . . . . . . . 8 (𝑤 ∈ (0[,)1) → (1 − 𝑤) ∈ ℝ+)
2019rpregt0d 13083 . . . . . . 7 (𝑤 ∈ (0[,)1) → ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤)))
2120adantl 481 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤)))
2215adantl 481 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑤 ∈ ℝ)
23 elico2 13451 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑧 ∈ (0[,)1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 < 1)))
244, 5, 23mp2an 692 . . . . . . . . . 10 (𝑧 ∈ (0[,)1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 < 1))
2524simp3bi 1148 . . . . . . . . 9 (𝑧 ∈ (0[,)1) → 𝑧 < 1)
26 difrp 13073 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑧 < 1 ↔ (1 − 𝑧) ∈ ℝ+))
2710, 16, 26sylancl 586 . . . . . . . . 9 (𝑧 ∈ (0[,)1) → (𝑧 < 1 ↔ (1 − 𝑧) ∈ ℝ+))
2825, 27mpbid 232 . . . . . . . 8 (𝑧 ∈ (0[,)1) → (1 − 𝑧) ∈ ℝ+)
2928adantr 480 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (1 − 𝑧) ∈ ℝ+)
3029rpregt0d 13083 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((1 − 𝑧) ∈ ℝ ∧ 0 < (1 − 𝑧)))
31 lt2mul2div 12146 . . . . . 6 (((𝑧 ∈ ℝ ∧ ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤))) ∧ (𝑤 ∈ ℝ ∧ ((1 − 𝑧) ∈ ℝ ∧ 0 < (1 − 𝑧)))) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
3211, 21, 22, 30, 31syl22anc 839 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
3311, 22remulcld 11291 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · 𝑤) ∈ ℝ)
3411, 22, 33ltsub1d 11872 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝑧 − (𝑧 · 𝑤)) < (𝑤 − (𝑧 · 𝑤))))
3511recnd 11289 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑧 ∈ ℂ)
36 1cnd 11256 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 1 ∈ ℂ)
3722recnd 11289 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑤 ∈ ℂ)
3835, 36, 37subdid 11719 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · (1 − 𝑤)) = ((𝑧 · 1) − (𝑧 · 𝑤)))
3935mulridd 11278 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · 1) = 𝑧)
4039oveq1d 7446 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · 1) − (𝑧 · 𝑤)) = (𝑧 − (𝑧 · 𝑤)))
4138, 40eqtrd 2777 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · (1 − 𝑤)) = (𝑧 − (𝑧 · 𝑤)))
4237, 36, 35subdid 11719 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · (1 − 𝑧)) = ((𝑤 · 1) − (𝑤 · 𝑧)))
4337mulridd 11278 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · 1) = 𝑤)
4437, 35mulcomd 11282 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · 𝑧) = (𝑧 · 𝑤))
4543, 44oveq12d 7449 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑤 · 1) − (𝑤 · 𝑧)) = (𝑤 − (𝑧 · 𝑤)))
4642, 45eqtrd 2777 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · (1 − 𝑧)) = (𝑤 − (𝑧 · 𝑤)))
4741, 46breq12d 5156 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 − (𝑧 · 𝑤)) < (𝑤 − (𝑧 · 𝑤))))
4834, 47bitr4d 282 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧))))
49 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
50 oveq2 7439 . . . . . . . 8 (𝑥 = 𝑧 → (1 − 𝑥) = (1 − 𝑧))
5149, 50oveq12d 7449 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 / (1 − 𝑥)) = (𝑧 / (1 − 𝑧)))
52 ovex 7464 . . . . . . 7 (𝑧 / (1 − 𝑧)) ∈ V
5351, 1, 52fvmpt 7016 . . . . . 6 (𝑧 ∈ (0[,)1) → (𝐹𝑧) = (𝑧 / (1 − 𝑧)))
54 id 22 . . . . . . . 8 (𝑥 = 𝑤𝑥 = 𝑤)
55 oveq2 7439 . . . . . . . 8 (𝑥 = 𝑤 → (1 − 𝑥) = (1 − 𝑤))
5654, 55oveq12d 7449 . . . . . . 7 (𝑥 = 𝑤 → (𝑥 / (1 − 𝑥)) = (𝑤 / (1 − 𝑤)))
57 ovex 7464 . . . . . . 7 (𝑤 / (1 − 𝑤)) ∈ V
5856, 1, 57fvmpt 7016 . . . . . 6 (𝑤 ∈ (0[,)1) → (𝐹𝑤) = (𝑤 / (1 − 𝑤)))
5953, 58breqan12d 5159 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝐹𝑧) < (𝐹𝑤) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
6032, 48, 593bitr4d 311 . . . 4 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤)))
6160rgen2 3199 . . 3 𝑧 ∈ (0[,)1)∀𝑤 ∈ (0[,)1)(𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤))
62 df-isom 6570 . . 3 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ ∀𝑧 ∈ (0[,)1)∀𝑤 ∈ (0[,)1)(𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤))))
633, 61, 62mpbir2an 711 . 2 𝐹 Isom < , < ((0[,)1), (0[,)+∞))
64 letsr 18638 . . . . . 6 ≤ ∈ TosetRel
6564elexi 3503 . . . . 5 ≤ ∈ V
6665inex1 5317 . . . 4 ( ≤ ∩ ((0[,)1) × (0[,)1))) ∈ V
6765inex1 5317 . . . 4 ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) ∈ V
68 icossxr 13472 . . . . . . . 8 (0[,)1) ⊆ ℝ*
69 icossxr 13472 . . . . . . . 8 (0[,)+∞) ⊆ ℝ*
70 leiso 14498 . . . . . . . 8 (((0[,)1) ⊆ ℝ* ∧ (0[,)+∞) ⊆ ℝ*) → (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞))))
7168, 69, 70mp2an 692 . . . . . . 7 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞)))
7263, 71mpbi 230 . . . . . 6 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞))
73 isores1 7354 . . . . . 6 (𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞)))
7472, 73mpbi 230 . . . . 5 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞))
75 isores2 7353 . . . . 5 (𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞)))
7674, 75mpbi 230 . . . 4 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞))
77 tsrps 18632 . . . . . . . 8 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
7864, 77ax-mp 5 . . . . . . 7 ≤ ∈ PosetRel
79 ledm 18635 . . . . . . . 8 * = dom ≤
8079psssdm 18627 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,)1) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,)1) × (0[,)1))) = (0[,)1))
8178, 68, 80mp2an 692 . . . . . 6 dom ( ≤ ∩ ((0[,)1) × (0[,)1))) = (0[,)1)
8281eqcomi 2746 . . . . 5 (0[,)1) = dom ( ≤ ∩ ((0[,)1) × (0[,)1)))
8379psssdm 18627 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,)+∞) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) = (0[,)+∞))
8478, 69, 83mp2an 692 . . . . . 6 dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) = (0[,)+∞)
8584eqcomi 2746 . . . . 5 (0[,)+∞) = dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))
8682, 85ordthmeo 23810 . . . 4 ((( ≤ ∩ ((0[,)1) × (0[,)1))) ∈ V ∧ ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞))) → 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))))
8766, 67, 76, 86mp3an 1463 . . 3 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))))
88 icopnfhmeo.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
89 eqid 2737 . . . . . . 7 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
9088, 89xrrest2 24830 . . . . . 6 ((0[,)1) ⊆ ℝ → (𝐽t (0[,)1)) = ((ordTop‘ ≤ ) ↾t (0[,)1)))
919, 90ax-mp 5 . . . . 5 (𝐽t (0[,)1)) = ((ordTop‘ ≤ ) ↾t (0[,)1))
92 iccssico2 13461 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)1)) → (𝑥[,]𝑦) ⊆ (0[,)1))
9368, 92ordtrestixx 23230 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,)1)) = (ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))
9491, 93eqtri 2765 . . . 4 (𝐽t (0[,)1)) = (ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))
95 rge0ssre 13496 . . . . . 6 (0[,)+∞) ⊆ ℝ
9688, 89xrrest2 24830 . . . . . 6 ((0[,)+∞) ⊆ ℝ → (𝐽t (0[,)+∞)) = ((ordTop‘ ≤ ) ↾t (0[,)+∞)))
9795, 96ax-mp 5 . . . . 5 (𝐽t (0[,)+∞)) = ((ordTop‘ ≤ ) ↾t (0[,)+∞))
98 iccssico2 13461 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥[,]𝑦) ⊆ (0[,)+∞))
9969, 98ordtrestixx 23230 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,)+∞)) = (ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))
10097, 99eqtri 2765 . . . 4 (𝐽t (0[,)+∞)) = (ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))
10194, 100oveq12i 7443 . . 3 ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))) = ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))))
10287, 101eleqtrri 2840 . 2 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞)))
10363, 102pm3.2i 470 1 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ∧ 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cin 3950  wss 3951   class class class wbr 5143  cmpt 5225   × cxp 5683  ccnv 5684  dom cdm 5685  1-1-ontowf1o 6560  cfv 6561   Isom wiso 6562  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  +crp 13034  [,)cico 13389  t crest 17465  TopOpenctopn 17466  ordTopcordt 17544  PosetRelcps 18609   TosetRel ctsr 18610  fldccnfld 21364  Homeochmeo 23761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17467  df-topn 17468  df-topgen 17488  df-ordt 17546  df-ps 18611  df-tsr 18612  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-hmeo 23763  df-xms 24330  df-ms 24331
This theorem is referenced by:  iccpnfhmeo  24976
  Copyright terms: Public domain W3C validator