MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfhmeo Structured version   Visualization version   GIF version

Theorem icopnfhmeo 23230
Description: The defined bijection from [0, 1) to [0, +∞) is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
icopnfhmeo.f 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
icopnfhmeo.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
icopnfhmeo (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ∧ 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))))
Distinct variable group:   𝑥,𝐽
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icopnfhmeo
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icopnfhmeo.f . . . . 5 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
21icopnfcnv 23229 . . . 4 (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
32simpli 484 . . 3 𝐹:(0[,)1)–1-1-onto→(0[,)+∞)
4 0re 10489 . . . . . . . . . . 11 0 ∈ ℝ
5 1xr 10547 . . . . . . . . . . 11 1 ∈ ℝ*
6 elico2 12650 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1)))
74, 5, 6mp2an 688 . . . . . . . . . 10 (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1))
87simp1bi 1138 . . . . . . . . 9 (𝑥 ∈ (0[,)1) → 𝑥 ∈ ℝ)
98ssriv 3893 . . . . . . . 8 (0[,)1) ⊆ ℝ
109sseli 3885 . . . . . . 7 (𝑧 ∈ (0[,)1) → 𝑧 ∈ ℝ)
1110adantr 481 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑧 ∈ ℝ)
12 elico2 12650 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑤 ∈ (0[,)1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < 1)))
134, 5, 12mp2an 688 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < 1))
1413simp3bi 1140 . . . . . . . . 9 (𝑤 ∈ (0[,)1) → 𝑤 < 1)
159sseli 3885 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) → 𝑤 ∈ ℝ)
16 1re 10487 . . . . . . . . . 10 1 ∈ ℝ
17 difrp 12277 . . . . . . . . . 10 ((𝑤 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑤 < 1 ↔ (1 − 𝑤) ∈ ℝ+))
1815, 16, 17sylancl 586 . . . . . . . . 9 (𝑤 ∈ (0[,)1) → (𝑤 < 1 ↔ (1 − 𝑤) ∈ ℝ+))
1914, 18mpbid 233 . . . . . . . 8 (𝑤 ∈ (0[,)1) → (1 − 𝑤) ∈ ℝ+)
2019rpregt0d 12287 . . . . . . 7 (𝑤 ∈ (0[,)1) → ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤)))
2120adantl 482 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤)))
2215adantl 482 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑤 ∈ ℝ)
23 elico2 12650 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑧 ∈ (0[,)1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 < 1)))
244, 5, 23mp2an 688 . . . . . . . . . 10 (𝑧 ∈ (0[,)1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 < 1))
2524simp3bi 1140 . . . . . . . . 9 (𝑧 ∈ (0[,)1) → 𝑧 < 1)
26 difrp 12277 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑧 < 1 ↔ (1 − 𝑧) ∈ ℝ+))
2710, 16, 26sylancl 586 . . . . . . . . 9 (𝑧 ∈ (0[,)1) → (𝑧 < 1 ↔ (1 − 𝑧) ∈ ℝ+))
2825, 27mpbid 233 . . . . . . . 8 (𝑧 ∈ (0[,)1) → (1 − 𝑧) ∈ ℝ+)
2928adantr 481 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (1 − 𝑧) ∈ ℝ+)
3029rpregt0d 12287 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((1 − 𝑧) ∈ ℝ ∧ 0 < (1 − 𝑧)))
31 lt2mul2div 11366 . . . . . 6 (((𝑧 ∈ ℝ ∧ ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤))) ∧ (𝑤 ∈ ℝ ∧ ((1 − 𝑧) ∈ ℝ ∧ 0 < (1 − 𝑧)))) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
3211, 21, 22, 30, 31syl22anc 835 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
3311, 22remulcld 10517 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · 𝑤) ∈ ℝ)
3411, 22, 33ltsub1d 11097 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝑧 − (𝑧 · 𝑤)) < (𝑤 − (𝑧 · 𝑤))))
3511recnd 10515 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑧 ∈ ℂ)
36 1cnd 10482 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 1 ∈ ℂ)
3722recnd 10515 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑤 ∈ ℂ)
3835, 36, 37subdid 10944 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · (1 − 𝑤)) = ((𝑧 · 1) − (𝑧 · 𝑤)))
3935mulid1d 10504 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · 1) = 𝑧)
4039oveq1d 7031 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · 1) − (𝑧 · 𝑤)) = (𝑧 − (𝑧 · 𝑤)))
4138, 40eqtrd 2831 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · (1 − 𝑤)) = (𝑧 − (𝑧 · 𝑤)))
4237, 36, 35subdid 10944 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · (1 − 𝑧)) = ((𝑤 · 1) − (𝑤 · 𝑧)))
4337mulid1d 10504 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · 1) = 𝑤)
4437, 35mulcomd 10508 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · 𝑧) = (𝑧 · 𝑤))
4543, 44oveq12d 7034 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑤 · 1) − (𝑤 · 𝑧)) = (𝑤 − (𝑧 · 𝑤)))
4642, 45eqtrd 2831 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · (1 − 𝑧)) = (𝑤 − (𝑧 · 𝑤)))
4741, 46breq12d 4975 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 − (𝑧 · 𝑤)) < (𝑤 − (𝑧 · 𝑤))))
4834, 47bitr4d 283 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧))))
49 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
50 oveq2 7024 . . . . . . . 8 (𝑥 = 𝑧 → (1 − 𝑥) = (1 − 𝑧))
5149, 50oveq12d 7034 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 / (1 − 𝑥)) = (𝑧 / (1 − 𝑧)))
52 ovex 7048 . . . . . . 7 (𝑧 / (1 − 𝑧)) ∈ V
5351, 1, 52fvmpt 6635 . . . . . 6 (𝑧 ∈ (0[,)1) → (𝐹𝑧) = (𝑧 / (1 − 𝑧)))
54 id 22 . . . . . . . 8 (𝑥 = 𝑤𝑥 = 𝑤)
55 oveq2 7024 . . . . . . . 8 (𝑥 = 𝑤 → (1 − 𝑥) = (1 − 𝑤))
5654, 55oveq12d 7034 . . . . . . 7 (𝑥 = 𝑤 → (𝑥 / (1 − 𝑥)) = (𝑤 / (1 − 𝑤)))
57 ovex 7048 . . . . . . 7 (𝑤 / (1 − 𝑤)) ∈ V
5856, 1, 57fvmpt 6635 . . . . . 6 (𝑤 ∈ (0[,)1) → (𝐹𝑤) = (𝑤 / (1 − 𝑤)))
5953, 58breqan12d 4978 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝐹𝑧) < (𝐹𝑤) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
6032, 48, 593bitr4d 312 . . . 4 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤)))
6160rgen2a 3193 . . 3 𝑧 ∈ (0[,)1)∀𝑤 ∈ (0[,)1)(𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤))
62 df-isom 6234 . . 3 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ ∀𝑧 ∈ (0[,)1)∀𝑤 ∈ (0[,)1)(𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤))))
633, 61, 62mpbir2an 707 . 2 𝐹 Isom < , < ((0[,)1), (0[,)+∞))
64 letsr 17666 . . . . . 6 ≤ ∈ TosetRel
6564elexi 3456 . . . . 5 ≤ ∈ V
6665inex1 5112 . . . 4 ( ≤ ∩ ((0[,)1) × (0[,)1))) ∈ V
6765inex1 5112 . . . 4 ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) ∈ V
68 icossxr 12671 . . . . . . . 8 (0[,)1) ⊆ ℝ*
69 icossxr 12671 . . . . . . . 8 (0[,)+∞) ⊆ ℝ*
70 leiso 13665 . . . . . . . 8 (((0[,)1) ⊆ ℝ* ∧ (0[,)+∞) ⊆ ℝ*) → (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞))))
7168, 69, 70mp2an 688 . . . . . . 7 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞)))
7263, 71mpbi 231 . . . . . 6 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞))
73 isores1 6950 . . . . . 6 (𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞)))
7472, 73mpbi 231 . . . . 5 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞))
75 isores2 6949 . . . . 5 (𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞)))
7674, 75mpbi 231 . . . 4 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞))
77 tsrps 17660 . . . . . . . 8 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
7864, 77ax-mp 5 . . . . . . 7 ≤ ∈ PosetRel
79 ledm 17663 . . . . . . . 8 * = dom ≤
8079psssdm 17655 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,)1) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,)1) × (0[,)1))) = (0[,)1))
8178, 68, 80mp2an 688 . . . . . 6 dom ( ≤ ∩ ((0[,)1) × (0[,)1))) = (0[,)1)
8281eqcomi 2804 . . . . 5 (0[,)1) = dom ( ≤ ∩ ((0[,)1) × (0[,)1)))
8379psssdm 17655 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,)+∞) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) = (0[,)+∞))
8478, 69, 83mp2an 688 . . . . . 6 dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) = (0[,)+∞)
8584eqcomi 2804 . . . . 5 (0[,)+∞) = dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))
8682, 85ordthmeo 22094 . . . 4 ((( ≤ ∩ ((0[,)1) × (0[,)1))) ∈ V ∧ ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞))) → 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))))
8766, 67, 76, 86mp3an 1453 . . 3 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))))
88 icopnfhmeo.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
89 eqid 2795 . . . . . . 7 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
9088, 89xrrest2 23099 . . . . . 6 ((0[,)1) ⊆ ℝ → (𝐽t (0[,)1)) = ((ordTop‘ ≤ ) ↾t (0[,)1)))
919, 90ax-mp 5 . . . . 5 (𝐽t (0[,)1)) = ((ordTop‘ ≤ ) ↾t (0[,)1))
92 iccssico2 12660 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)1)) → (𝑥[,]𝑦) ⊆ (0[,)1))
9368, 92ordtrestixx 21514 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,)1)) = (ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))
9491, 93eqtri 2819 . . . 4 (𝐽t (0[,)1)) = (ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))
95 rge0ssre 12694 . . . . . 6 (0[,)+∞) ⊆ ℝ
9688, 89xrrest2 23099 . . . . . 6 ((0[,)+∞) ⊆ ℝ → (𝐽t (0[,)+∞)) = ((ordTop‘ ≤ ) ↾t (0[,)+∞)))
9795, 96ax-mp 5 . . . . 5 (𝐽t (0[,)+∞)) = ((ordTop‘ ≤ ) ↾t (0[,)+∞))
98 iccssico2 12660 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥[,]𝑦) ⊆ (0[,)+∞))
9969, 98ordtrestixx 21514 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,)+∞)) = (ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))
10097, 99eqtri 2819 . . . 4 (𝐽t (0[,)+∞)) = (ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))
10194, 100oveq12i 7028 . . 3 ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))) = ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))))
10287, 101eleqtrri 2882 . 2 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞)))
10363, 102pm3.2i 471 1 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ∧ 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wral 3105  Vcvv 3437  cin 3858  wss 3859   class class class wbr 4962  cmpt 5041   × cxp 5441  ccnv 5442  dom cdm 5443  1-1-ontowf1o 6224  cfv 6225   Isom wiso 6226  (class class class)co 7016  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388  +∞cpnf 10518  *cxr 10520   < clt 10521  cle 10522  cmin 10717   / cdiv 11145  +crp 12239  [,)cico 12590  t crest 16523  TopOpenctopn 16524  ordTopcordt 16601  PosetRelcps 17637   TosetRel ctsr 17638  fldccnfld 20227  Homeochmeo 22045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fi 8721  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-plusg 16407  df-mulr 16408  df-starv 16409  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-rest 16525  df-topn 16526  df-topgen 16546  df-ordt 16603  df-ps 17639  df-tsr 17640  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cn 21519  df-hmeo 22047  df-xms 22613  df-ms 22614
This theorem is referenced by:  iccpnfhmeo  23232
  Copyright terms: Public domain W3C validator