MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfhmeo Structured version   Visualization version   GIF version

Theorem icopnfhmeo 24848
Description: The defined bijection from [0, 1) to [0, +∞) is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
icopnfhmeo.f 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
icopnfhmeo.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
icopnfhmeo (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ∧ 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))))
Distinct variable group:   𝑥,𝐽
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icopnfhmeo
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icopnfhmeo.f . . . . 5 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
21icopnfcnv 24847 . . . 4 (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
32simpli 483 . . 3 𝐹:(0[,)1)–1-1-onto→(0[,)+∞)
4 0re 11183 . . . . . . . . . . 11 0 ∈ ℝ
5 1xr 11240 . . . . . . . . . . 11 1 ∈ ℝ*
6 elico2 13378 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1)))
74, 5, 6mp2an 692 . . . . . . . . . 10 (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1))
87simp1bi 1145 . . . . . . . . 9 (𝑥 ∈ (0[,)1) → 𝑥 ∈ ℝ)
98ssriv 3953 . . . . . . . 8 (0[,)1) ⊆ ℝ
109sseli 3945 . . . . . . 7 (𝑧 ∈ (0[,)1) → 𝑧 ∈ ℝ)
1110adantr 480 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑧 ∈ ℝ)
12 elico2 13378 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑤 ∈ (0[,)1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < 1)))
134, 5, 12mp2an 692 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < 1))
1413simp3bi 1147 . . . . . . . . 9 (𝑤 ∈ (0[,)1) → 𝑤 < 1)
159sseli 3945 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) → 𝑤 ∈ ℝ)
16 1re 11181 . . . . . . . . . 10 1 ∈ ℝ
17 difrp 12998 . . . . . . . . . 10 ((𝑤 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑤 < 1 ↔ (1 − 𝑤) ∈ ℝ+))
1815, 16, 17sylancl 586 . . . . . . . . 9 (𝑤 ∈ (0[,)1) → (𝑤 < 1 ↔ (1 − 𝑤) ∈ ℝ+))
1914, 18mpbid 232 . . . . . . . 8 (𝑤 ∈ (0[,)1) → (1 − 𝑤) ∈ ℝ+)
2019rpregt0d 13008 . . . . . . 7 (𝑤 ∈ (0[,)1) → ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤)))
2120adantl 481 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤)))
2215adantl 481 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑤 ∈ ℝ)
23 elico2 13378 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑧 ∈ (0[,)1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 < 1)))
244, 5, 23mp2an 692 . . . . . . . . . 10 (𝑧 ∈ (0[,)1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 < 1))
2524simp3bi 1147 . . . . . . . . 9 (𝑧 ∈ (0[,)1) → 𝑧 < 1)
26 difrp 12998 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑧 < 1 ↔ (1 − 𝑧) ∈ ℝ+))
2710, 16, 26sylancl 586 . . . . . . . . 9 (𝑧 ∈ (0[,)1) → (𝑧 < 1 ↔ (1 − 𝑧) ∈ ℝ+))
2825, 27mpbid 232 . . . . . . . 8 (𝑧 ∈ (0[,)1) → (1 − 𝑧) ∈ ℝ+)
2928adantr 480 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (1 − 𝑧) ∈ ℝ+)
3029rpregt0d 13008 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((1 − 𝑧) ∈ ℝ ∧ 0 < (1 − 𝑧)))
31 lt2mul2div 12068 . . . . . 6 (((𝑧 ∈ ℝ ∧ ((1 − 𝑤) ∈ ℝ ∧ 0 < (1 − 𝑤))) ∧ (𝑤 ∈ ℝ ∧ ((1 − 𝑧) ∈ ℝ ∧ 0 < (1 − 𝑧)))) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
3211, 21, 22, 30, 31syl22anc 838 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
3311, 22remulcld 11211 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · 𝑤) ∈ ℝ)
3411, 22, 33ltsub1d 11794 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝑧 − (𝑧 · 𝑤)) < (𝑤 − (𝑧 · 𝑤))))
3511recnd 11209 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑧 ∈ ℂ)
36 1cnd 11176 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 1 ∈ ℂ)
3722recnd 11209 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → 𝑤 ∈ ℂ)
3835, 36, 37subdid 11641 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · (1 − 𝑤)) = ((𝑧 · 1) − (𝑧 · 𝑤)))
3935mulridd 11198 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · 1) = 𝑧)
4039oveq1d 7405 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · 1) − (𝑧 · 𝑤)) = (𝑧 − (𝑧 · 𝑤)))
4138, 40eqtrd 2765 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 · (1 − 𝑤)) = (𝑧 − (𝑧 · 𝑤)))
4237, 36, 35subdid 11641 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · (1 − 𝑧)) = ((𝑤 · 1) − (𝑤 · 𝑧)))
4337mulridd 11198 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · 1) = 𝑤)
4437, 35mulcomd 11202 . . . . . . . . 9 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · 𝑧) = (𝑧 · 𝑤))
4543, 44oveq12d 7408 . . . . . . . 8 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑤 · 1) − (𝑤 · 𝑧)) = (𝑤 − (𝑧 · 𝑤)))
4642, 45eqtrd 2765 . . . . . . 7 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑤 · (1 − 𝑧)) = (𝑤 − (𝑧 · 𝑤)))
4741, 46breq12d 5123 . . . . . 6 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧)) ↔ (𝑧 − (𝑧 · 𝑤)) < (𝑤 − (𝑧 · 𝑤))))
4834, 47bitr4d 282 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝑧 · (1 − 𝑤)) < (𝑤 · (1 − 𝑧))))
49 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
50 oveq2 7398 . . . . . . . 8 (𝑥 = 𝑧 → (1 − 𝑥) = (1 − 𝑧))
5149, 50oveq12d 7408 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 / (1 − 𝑥)) = (𝑧 / (1 − 𝑧)))
52 ovex 7423 . . . . . . 7 (𝑧 / (1 − 𝑧)) ∈ V
5351, 1, 52fvmpt 6971 . . . . . 6 (𝑧 ∈ (0[,)1) → (𝐹𝑧) = (𝑧 / (1 − 𝑧)))
54 id 22 . . . . . . . 8 (𝑥 = 𝑤𝑥 = 𝑤)
55 oveq2 7398 . . . . . . . 8 (𝑥 = 𝑤 → (1 − 𝑥) = (1 − 𝑤))
5654, 55oveq12d 7408 . . . . . . 7 (𝑥 = 𝑤 → (𝑥 / (1 − 𝑥)) = (𝑤 / (1 − 𝑤)))
57 ovex 7423 . . . . . . 7 (𝑤 / (1 − 𝑤)) ∈ V
5856, 1, 57fvmpt 6971 . . . . . 6 (𝑤 ∈ (0[,)1) → (𝐹𝑤) = (𝑤 / (1 − 𝑤)))
5953, 58breqan12d 5126 . . . . 5 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → ((𝐹𝑧) < (𝐹𝑤) ↔ (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))))
6032, 48, 593bitr4d 311 . . . 4 ((𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1)) → (𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤)))
6160rgen2 3178 . . 3 𝑧 ∈ (0[,)1)∀𝑤 ∈ (0[,)1)(𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤))
62 df-isom 6523 . . 3 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ ∀𝑧 ∈ (0[,)1)∀𝑤 ∈ (0[,)1)(𝑧 < 𝑤 ↔ (𝐹𝑧) < (𝐹𝑤))))
633, 61, 62mpbir2an 711 . 2 𝐹 Isom < , < ((0[,)1), (0[,)+∞))
64 letsr 18559 . . . . . 6 ≤ ∈ TosetRel
6564elexi 3473 . . . . 5 ≤ ∈ V
6665inex1 5275 . . . 4 ( ≤ ∩ ((0[,)1) × (0[,)1))) ∈ V
6765inex1 5275 . . . 4 ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) ∈ V
68 icossxr 13400 . . . . . . . 8 (0[,)1) ⊆ ℝ*
69 icossxr 13400 . . . . . . . 8 (0[,)+∞) ⊆ ℝ*
70 leiso 14431 . . . . . . . 8 (((0[,)1) ⊆ ℝ* ∧ (0[,)+∞) ⊆ ℝ*) → (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞))))
7168, 69, 70mp2an 692 . . . . . . 7 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞)))
7263, 71mpbi 230 . . . . . 6 𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞))
73 isores1 7312 . . . . . 6 (𝐹 Isom ≤ , ≤ ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞)))
7472, 73mpbi 230 . . . . 5 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞))
75 isores2 7311 . . . . 5 (𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ≤ ((0[,)1), (0[,)+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞)))
7674, 75mpbi 230 . . . 4 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞))
77 tsrps 18553 . . . . . . . 8 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
7864, 77ax-mp 5 . . . . . . 7 ≤ ∈ PosetRel
79 ledm 18556 . . . . . . . 8 * = dom ≤
8079psssdm 18548 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,)1) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,)1) × (0[,)1))) = (0[,)1))
8178, 68, 80mp2an 692 . . . . . 6 dom ( ≤ ∩ ((0[,)1) × (0[,)1))) = (0[,)1)
8281eqcomi 2739 . . . . 5 (0[,)1) = dom ( ≤ ∩ ((0[,)1) × (0[,)1)))
8379psssdm 18548 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,)+∞) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) = (0[,)+∞))
8478, 69, 83mp2an 692 . . . . . 6 dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) = (0[,)+∞)
8584eqcomi 2739 . . . . 5 (0[,)+∞) = dom ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))
8682, 85ordthmeo 23696 . . . 4 ((( ≤ ∩ ((0[,)1) × (0[,)1))) ∈ V ∧ ( ≤ ∩ ((0[,)+∞) × (0[,)+∞))) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ((0[,)1) × (0[,)1))), ( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))((0[,)1), (0[,)+∞))) → 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))))
8766, 67, 76, 86mp3an 1463 . . 3 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))))
88 icopnfhmeo.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
89 eqid 2730 . . . . . . 7 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
9088, 89xrrest2 24704 . . . . . 6 ((0[,)1) ⊆ ℝ → (𝐽t (0[,)1)) = ((ordTop‘ ≤ ) ↾t (0[,)1)))
919, 90ax-mp 5 . . . . 5 (𝐽t (0[,)1)) = ((ordTop‘ ≤ ) ↾t (0[,)1))
92 iccssico2 13388 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)1)) → (𝑥[,]𝑦) ⊆ (0[,)1))
9368, 92ordtrestixx 23116 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,)1)) = (ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))
9491, 93eqtri 2753 . . . 4 (𝐽t (0[,)1)) = (ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))
95 rge0ssre 13424 . . . . . 6 (0[,)+∞) ⊆ ℝ
9688, 89xrrest2 24704 . . . . . 6 ((0[,)+∞) ⊆ ℝ → (𝐽t (0[,)+∞)) = ((ordTop‘ ≤ ) ↾t (0[,)+∞)))
9795, 96ax-mp 5 . . . . 5 (𝐽t (0[,)+∞)) = ((ordTop‘ ≤ ) ↾t (0[,)+∞))
98 iccssico2 13388 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥[,]𝑦) ⊆ (0[,)+∞))
9969, 98ordtrestixx 23116 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,)+∞)) = (ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))
10097, 99eqtri 2753 . . . 4 (𝐽t (0[,)+∞)) = (ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞))))
10194, 100oveq12i 7402 . . 3 ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))) = ((ordTop‘( ≤ ∩ ((0[,)1) × (0[,)1))))Homeo(ordTop‘( ≤ ∩ ((0[,)+∞) × (0[,)+∞)))))
10287, 101eleqtrri 2828 . 2 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞)))
10363, 102pm3.2i 470 1 (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ∧ 𝐹 ∈ ((𝐽t (0[,)1))Homeo(𝐽t (0[,)+∞))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cin 3916  wss 3917   class class class wbr 5110  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  1-1-ontowf1o 6513  cfv 6514   Isom wiso 6515  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  +crp 12958  [,)cico 13315  t crest 17390  TopOpenctopn 17391  ordTopcordt 17469  PosetRelcps 18530   TosetRel ctsr 18531  fldccnfld 21271  Homeochmeo 23647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-ordt 17471  df-ps 18532  df-tsr 18533  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-hmeo 23649  df-xms 24215  df-ms 24216
This theorem is referenced by:  iccpnfhmeo  24850
  Copyright terms: Public domain W3C validator