MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccpnfhmeo Structured version   Visualization version   GIF version

Theorem iccpnfhmeo 24990
Description: The defined bijection from [0, 1] to [0, +∞] is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
iccpnfhmeo.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
iccpnfhmeo.k 𝐾 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
iccpnfhmeo (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo𝐾))

Proof of Theorem iccpnfhmeo
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 13467 . . . 4 (0[,]1) ⊆ ℝ*
2 xrltso 13180 . . . 4 < Or ℝ*
3 soss 5617 . . . 4 ((0[,]1) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]1)))
41, 2, 3mp2 9 . . 3 < Or (0[,]1)
5 iccssxr 13467 . . . . 5 (0[,]+∞) ⊆ ℝ*
6 soss 5617 . . . . 5 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
75, 2, 6mp2 9 . . . 4 < Or (0[,]+∞)
8 sopo 5616 . . . 4 ( < Or (0[,]+∞) → < Po (0[,]+∞))
97, 8ax-mp 5 . . 3 < Po (0[,]+∞)
10 iccpnfhmeo.f . . . . . 6 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
1110iccpnfcnv 24989 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
1211simpli 483 . . . 4 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
13 f1ofo 6856 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)–onto→(0[,]+∞))
1412, 13ax-mp 5 . . 3 𝐹:(0[,]1)–onto→(0[,]+∞)
15 elicc01 13503 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1))
1615simp1bi 1144 . . . . . . . . . . 11 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
17163ad2ant1 1132 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ℝ)
18 elicc01 13503 . . . . . . . . . . . . 13 (𝑤 ∈ (0[,]1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 ≤ 1))
1918simp1bi 1144 . . . . . . . . . . . 12 (𝑤 ∈ (0[,]1) → 𝑤 ∈ ℝ)
20193ad2ant2 1133 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ ℝ)
21 1red 11260 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 1 ∈ ℝ)
22 simp3 1137 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 < 𝑤)
2318simp3bi 1146 . . . . . . . . . . . 12 (𝑤 ∈ (0[,]1) → 𝑤 ≤ 1)
24233ad2ant2 1133 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ≤ 1)
2517, 20, 21, 22, 24ltletrd 11419 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 < 1)
2617, 25gtned 11394 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 1 ≠ 𝑧)
2726necomd 2994 . . . . . . . 8 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ≠ 1)
28 ifnefalse 4543 . . . . . . . 8 (𝑧 ≠ 1 → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) = (𝑧 / (1 − 𝑧)))
2927, 28syl 17 . . . . . . 7 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) = (𝑧 / (1 − 𝑧)))
30 breq2 5152 . . . . . . . 8 (+∞ = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) → ((𝑧 / (1 − 𝑧)) < +∞ ↔ (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
31 breq2 5152 . . . . . . . 8 ((𝑤 / (1 − 𝑤)) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) → ((𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤)) ↔ (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
32 1re 11259 . . . . . . . . . . . 12 1 ∈ ℝ
33 resubcl 11571 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 − 𝑧) ∈ ℝ)
3432, 17, 33sylancr 587 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (1 − 𝑧) ∈ ℝ)
35 ax-1cn 11211 . . . . . . . . . . . . 13 1 ∈ ℂ
3617recnd 11287 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ℂ)
37 subeq0 11533 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) = 0 ↔ 1 = 𝑧))
3837necon3bid 2983 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
3935, 36, 38sylancr 587 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
4026, 39mpbird 257 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (1 − 𝑧) ≠ 0)
4117, 34, 40redivcld 12093 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) ∈ ℝ)
4241ltpnfd 13161 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) < +∞)
4342adantr 480 . . . . . . . 8 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ 𝑤 = 1) → (𝑧 / (1 − 𝑧)) < +∞)
44 simpl3 1192 . . . . . . . . . 10 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑧 < 𝑤)
45 eqid 2735 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
46 eqid 2735 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4745, 46icopnfhmeo 24988 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)) ∧ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t (0[,)1))Homeo((TopOpen‘ℂfld) ↾t (0[,)+∞))))
4847simpli 483 . . . . . . . . . . . 12 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞))
4948a1i 11 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)))
50 simp1 1135 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (0[,]1))
51 0xr 11306 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
52 1xr 11318 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
53 0le1 11784 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
54 snunico 13516 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ((0[,)1) ∪ {1}) = (0[,]1))
5551, 52, 53, 54mp3an 1460 . . . . . . . . . . . . . . . . . 18 ((0[,)1) ∪ {1}) = (0[,]1)
5650, 55eleqtrrdi 2850 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ((0[,)1) ∪ {1}))
57 elun 4163 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((0[,)1) ∪ {1}) ↔ (𝑧 ∈ (0[,)1) ∨ 𝑧 ∈ {1}))
5856, 57sylib 218 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 ∈ (0[,)1) ∨ 𝑧 ∈ {1}))
5958ord 864 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑧 ∈ (0[,)1) → 𝑧 ∈ {1}))
60 elsni 4648 . . . . . . . . . . . . . . 15 (𝑧 ∈ {1} → 𝑧 = 1)
6159, 60syl6 35 . . . . . . . . . . . . . 14 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑧 ∈ (0[,)1) → 𝑧 = 1))
6261necon1ad 2955 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 ≠ 1 → 𝑧 ∈ (0[,)1)))
6327, 62mpd 15 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (0[,)1))
6463adantr 480 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑧 ∈ (0[,)1))
65 simp2 1136 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ (0[,]1))
6665, 55eleqtrrdi 2850 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ ((0[,)1) ∪ {1}))
67 elun 4163 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ((0[,)1) ∪ {1}) ↔ (𝑤 ∈ (0[,)1) ∨ 𝑤 ∈ {1}))
6866, 67sylib 218 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑤 ∈ (0[,)1) ∨ 𝑤 ∈ {1}))
6968ord 864 . . . . . . . . . . . . . 14 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 ∈ (0[,)1) → 𝑤 ∈ {1}))
70 elsni 4648 . . . . . . . . . . . . . 14 (𝑤 ∈ {1} → 𝑤 = 1)
7169, 70syl6 35 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 ∈ (0[,)1) → 𝑤 = 1))
7271con1d 145 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 = 1 → 𝑤 ∈ (0[,)1)))
7372imp 406 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑤 ∈ (0[,)1))
74 isorel 7346 . . . . . . . . . . 11 (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)) ∧ (𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1))) → (𝑧 < 𝑤 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤)))
7549, 64, 73, 74syl12anc 837 . . . . . . . . . 10 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑧 < 𝑤 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤)))
7644, 75mpbid 232 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤))
77 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑥 = 𝑧)
78 oveq2 7439 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (1 − 𝑥) = (1 − 𝑧))
7977, 78oveq12d 7449 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 / (1 − 𝑥)) = (𝑧 / (1 − 𝑧)))
80 ovex 7464 . . . . . . . . . . 11 (𝑧 / (1 − 𝑧)) ∈ V
8179, 45, 80fvmpt 7016 . . . . . . . . . 10 (𝑧 ∈ (0[,)1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) = (𝑧 / (1 − 𝑧)))
8264, 81syl 17 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) = (𝑧 / (1 − 𝑧)))
83 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑤𝑥 = 𝑤)
84 oveq2 7439 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (1 − 𝑥) = (1 − 𝑤))
8583, 84oveq12d 7449 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 / (1 − 𝑥)) = (𝑤 / (1 − 𝑤)))
86 ovex 7464 . . . . . . . . . . 11 (𝑤 / (1 − 𝑤)) ∈ V
8785, 45, 86fvmpt 7016 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤) = (𝑤 / (1 − 𝑤)))
8873, 87syl 17 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤) = (𝑤 / (1 − 𝑤)))
8976, 82, 883brtr3d 5179 . . . . . . . 8 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤)))
9030, 31, 43, 89ifbothda 4569 . . . . . . 7 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
9129, 90eqbrtrd 5170 . . . . . 6 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
92913expia 1120 . . . . 5 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
93 eqeq1 2739 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 1 ↔ 𝑧 = 1))
9493, 79ifbieq2d 4557 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))))
95 pnfex 11312 . . . . . . . 8 +∞ ∈ V
9695, 80ifex 4581 . . . . . . 7 if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) ∈ V
9794, 10, 96fvmpt 7016 . . . . . 6 (𝑧 ∈ (0[,]1) → (𝐹𝑧) = if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))))
98 eqeq1 2739 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 = 1 ↔ 𝑤 = 1))
9998, 85ifbieq2d 4557 . . . . . . 7 (𝑥 = 𝑤 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
10095, 86ifex 4581 . . . . . . 7 if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) ∈ V
10199, 10, 100fvmpt 7016 . . . . . 6 (𝑤 ∈ (0[,]1) → (𝐹𝑤) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
10297, 101breqan12d 5164 . . . . 5 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → ((𝐹𝑧) < (𝐹𝑤) ↔ if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
10392, 102sylibrd 259 . . . 4 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤)))
104103rgen2 3197 . . 3 𝑧 ∈ (0[,]1)∀𝑤 ∈ (0[,]1)(𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤))
105 soisoi 7348 . . 3 ((( < Or (0[,]1) ∧ < Po (0[,]+∞)) ∧ (𝐹:(0[,]1)–onto→(0[,]+∞) ∧ ∀𝑧 ∈ (0[,]1)∀𝑤 ∈ (0[,]1)(𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤)))) → 𝐹 Isom < , < ((0[,]1), (0[,]+∞)))
1064, 9, 14, 104, 105mp4an 693 . 2 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
107 letsr 18651 . . . . . 6 ≤ ∈ TosetRel
108107elexi 3501 . . . . 5 ≤ ∈ V
109108inex1 5323 . . . 4 ( ≤ ∩ ((0[,]1) × (0[,]1))) ∈ V
110108inex1 5323 . . . 4 ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) ∈ V
111 leiso 14495 . . . . . . . 8 (((0[,]1) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) → (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞))))
1121, 5, 111mp2an 692 . . . . . . 7 (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞)))
113106, 112mpbi 230 . . . . . 6 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞))
114 isores1 7354 . . . . . 6 (𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞)))
115113, 114mpbi 230 . . . . 5 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞))
116 isores2 7353 . . . . 5 (𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞)))
117115, 116mpbi 230 . . . 4 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞))
118 tsrps 18645 . . . . . . . 8 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
119107, 118ax-mp 5 . . . . . . 7 ≤ ∈ PosetRel
120 ledm 18648 . . . . . . . 8 * = dom ≤
121120psssdm 18640 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,]1) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1))
122119, 1, 121mp2an 692 . . . . . 6 dom ( ≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1)
123122eqcomi 2744 . . . . 5 (0[,]1) = dom ( ≤ ∩ ((0[,]1) × (0[,]1)))
124120psssdm 18640 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,]+∞) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) = (0[,]+∞))
125119, 5, 124mp2an 692 . . . . . 6 dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) = (0[,]+∞)
126125eqcomi 2744 . . . . 5 (0[,]+∞) = dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))
127123, 126ordthmeo 23826 . . . 4 ((( ≤ ∩ ((0[,]1) × (0[,]1))) ∈ V ∧ ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞))) → 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))))
128109, 110, 117, 127mp3an 1460 . . 3 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))))
129 dfii5 24925 . . . 4 II = (ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))
130 iccpnfhmeo.k . . . . 5 𝐾 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
131 ordtresticc 23247 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))
132130, 131eqtri 2763 . . . 4 𝐾 = (ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))
133129, 132oveq12i 7443 . . 3 (IIHomeo𝐾) = ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))))
134128, 133eleqtrri 2838 . 2 𝐹 ∈ (IIHomeo𝐾)
135106, 134pm3.2i 470 1 (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  cun 3961  cin 3962  wss 3963  ifcif 4531  {csn 4631   class class class wbr 5148  cmpt 5231   Po wpo 5595   Or wor 5596   × cxp 5687  ccnv 5688  dom cdm 5689  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563   Isom wiso 6564  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  [,)cico 13386  [,]cicc 13387  t crest 17467  TopOpenctopn 17468  ordTopcordt 17546  PosetRelcps 18622   TosetRel ctsr 18623  fldccnfld 21382  Homeochmeo 23777  IIcii 24915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17469  df-topn 17470  df-topgen 17490  df-ordt 17548  df-ps 18624  df-tsr 18625  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-hmeo 23779  df-xms 24346  df-ms 24347  df-ii 24917
This theorem is referenced by:  xrhmeo  24991  xrge0hmph  33893
  Copyright terms: Public domain W3C validator