MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccpnfhmeo Structured version   Visualization version   GIF version

Theorem iccpnfhmeo 24308
Description: The defined bijection from [0, 1] to [0, +∞] is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
iccpnfhmeo.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
iccpnfhmeo.k 𝐾 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
iccpnfhmeo (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo𝐾))

Proof of Theorem iccpnfhmeo
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 13347 . . . 4 (0[,]1) ⊆ ℝ*
2 xrltso 13060 . . . 4 < Or ℝ*
3 soss 5565 . . . 4 ((0[,]1) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]1)))
41, 2, 3mp2 9 . . 3 < Or (0[,]1)
5 iccssxr 13347 . . . . 5 (0[,]+∞) ⊆ ℝ*
6 soss 5565 . . . . 5 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
75, 2, 6mp2 9 . . . 4 < Or (0[,]+∞)
8 sopo 5564 . . . 4 ( < Or (0[,]+∞) → < Po (0[,]+∞))
97, 8ax-mp 5 . . 3 < Po (0[,]+∞)
10 iccpnfhmeo.f . . . . . 6 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
1110iccpnfcnv 24307 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
1211simpli 484 . . . 4 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
13 f1ofo 6791 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)–onto→(0[,]+∞))
1412, 13ax-mp 5 . . 3 𝐹:(0[,]1)–onto→(0[,]+∞)
15 elicc01 13383 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1))
1615simp1bi 1145 . . . . . . . . . . 11 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
17163ad2ant1 1133 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ℝ)
18 elicc01 13383 . . . . . . . . . . . . 13 (𝑤 ∈ (0[,]1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 ≤ 1))
1918simp1bi 1145 . . . . . . . . . . . 12 (𝑤 ∈ (0[,]1) → 𝑤 ∈ ℝ)
20193ad2ant2 1134 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ ℝ)
21 1red 11156 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 1 ∈ ℝ)
22 simp3 1138 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 < 𝑤)
2318simp3bi 1147 . . . . . . . . . . . 12 (𝑤 ∈ (0[,]1) → 𝑤 ≤ 1)
24233ad2ant2 1134 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ≤ 1)
2517, 20, 21, 22, 24ltletrd 11315 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 < 1)
2617, 25gtned 11290 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 1 ≠ 𝑧)
2726necomd 2999 . . . . . . . 8 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ≠ 1)
28 ifnefalse 4498 . . . . . . . 8 (𝑧 ≠ 1 → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) = (𝑧 / (1 − 𝑧)))
2927, 28syl 17 . . . . . . 7 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) = (𝑧 / (1 − 𝑧)))
30 breq2 5109 . . . . . . . 8 (+∞ = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) → ((𝑧 / (1 − 𝑧)) < +∞ ↔ (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
31 breq2 5109 . . . . . . . 8 ((𝑤 / (1 − 𝑤)) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) → ((𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤)) ↔ (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
32 1re 11155 . . . . . . . . . . . 12 1 ∈ ℝ
33 resubcl 11465 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 − 𝑧) ∈ ℝ)
3432, 17, 33sylancr 587 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (1 − 𝑧) ∈ ℝ)
35 ax-1cn 11109 . . . . . . . . . . . . 13 1 ∈ ℂ
3617recnd 11183 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ℂ)
37 subeq0 11427 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) = 0 ↔ 1 = 𝑧))
3837necon3bid 2988 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
3935, 36, 38sylancr 587 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
4026, 39mpbird 256 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (1 − 𝑧) ≠ 0)
4117, 34, 40redivcld 11983 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) ∈ ℝ)
4241ltpnfd 13042 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) < +∞)
4342adantr 481 . . . . . . . 8 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ 𝑤 = 1) → (𝑧 / (1 − 𝑧)) < +∞)
44 simpl3 1193 . . . . . . . . . 10 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑧 < 𝑤)
45 eqid 2736 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
46 eqid 2736 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4745, 46icopnfhmeo 24306 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)) ∧ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t (0[,)1))Homeo((TopOpen‘ℂfld) ↾t (0[,)+∞))))
4847simpli 484 . . . . . . . . . . . 12 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞))
4948a1i 11 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)))
50 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (0[,]1))
51 0xr 11202 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
52 1xr 11214 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
53 0le1 11678 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
54 snunico 13396 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ((0[,)1) ∪ {1}) = (0[,]1))
5551, 52, 53, 54mp3an 1461 . . . . . . . . . . . . . . . . . 18 ((0[,)1) ∪ {1}) = (0[,]1)
5650, 55eleqtrrdi 2849 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ((0[,)1) ∪ {1}))
57 elun 4108 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((0[,)1) ∪ {1}) ↔ (𝑧 ∈ (0[,)1) ∨ 𝑧 ∈ {1}))
5856, 57sylib 217 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 ∈ (0[,)1) ∨ 𝑧 ∈ {1}))
5958ord 862 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑧 ∈ (0[,)1) → 𝑧 ∈ {1}))
60 elsni 4603 . . . . . . . . . . . . . . 15 (𝑧 ∈ {1} → 𝑧 = 1)
6159, 60syl6 35 . . . . . . . . . . . . . 14 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑧 ∈ (0[,)1) → 𝑧 = 1))
6261necon1ad 2960 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 ≠ 1 → 𝑧 ∈ (0[,)1)))
6327, 62mpd 15 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (0[,)1))
6463adantr 481 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑧 ∈ (0[,)1))
65 simp2 1137 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ (0[,]1))
6665, 55eleqtrrdi 2849 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ ((0[,)1) ∪ {1}))
67 elun 4108 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ((0[,)1) ∪ {1}) ↔ (𝑤 ∈ (0[,)1) ∨ 𝑤 ∈ {1}))
6866, 67sylib 217 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑤 ∈ (0[,)1) ∨ 𝑤 ∈ {1}))
6968ord 862 . . . . . . . . . . . . . 14 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 ∈ (0[,)1) → 𝑤 ∈ {1}))
70 elsni 4603 . . . . . . . . . . . . . 14 (𝑤 ∈ {1} → 𝑤 = 1)
7169, 70syl6 35 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 ∈ (0[,)1) → 𝑤 = 1))
7271con1d 145 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 = 1 → 𝑤 ∈ (0[,)1)))
7372imp 407 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑤 ∈ (0[,)1))
74 isorel 7271 . . . . . . . . . . 11 (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)) ∧ (𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1))) → (𝑧 < 𝑤 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤)))
7549, 64, 73, 74syl12anc 835 . . . . . . . . . 10 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑧 < 𝑤 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤)))
7644, 75mpbid 231 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤))
77 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑥 = 𝑧)
78 oveq2 7365 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (1 − 𝑥) = (1 − 𝑧))
7977, 78oveq12d 7375 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 / (1 − 𝑥)) = (𝑧 / (1 − 𝑧)))
80 ovex 7390 . . . . . . . . . . 11 (𝑧 / (1 − 𝑧)) ∈ V
8179, 45, 80fvmpt 6948 . . . . . . . . . 10 (𝑧 ∈ (0[,)1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) = (𝑧 / (1 − 𝑧)))
8264, 81syl 17 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) = (𝑧 / (1 − 𝑧)))
83 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑤𝑥 = 𝑤)
84 oveq2 7365 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (1 − 𝑥) = (1 − 𝑤))
8583, 84oveq12d 7375 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 / (1 − 𝑥)) = (𝑤 / (1 − 𝑤)))
86 ovex 7390 . . . . . . . . . . 11 (𝑤 / (1 − 𝑤)) ∈ V
8785, 45, 86fvmpt 6948 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤) = (𝑤 / (1 − 𝑤)))
8873, 87syl 17 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤) = (𝑤 / (1 − 𝑤)))
8976, 82, 883brtr3d 5136 . . . . . . . 8 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤)))
9030, 31, 43, 89ifbothda 4524 . . . . . . 7 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
9129, 90eqbrtrd 5127 . . . . . 6 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
92913expia 1121 . . . . 5 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
93 eqeq1 2740 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 1 ↔ 𝑧 = 1))
9493, 79ifbieq2d 4512 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))))
95 pnfex 11208 . . . . . . . 8 +∞ ∈ V
9695, 80ifex 4536 . . . . . . 7 if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) ∈ V
9794, 10, 96fvmpt 6948 . . . . . 6 (𝑧 ∈ (0[,]1) → (𝐹𝑧) = if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))))
98 eqeq1 2740 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 = 1 ↔ 𝑤 = 1))
9998, 85ifbieq2d 4512 . . . . . . 7 (𝑥 = 𝑤 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
10095, 86ifex 4536 . . . . . . 7 if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) ∈ V
10199, 10, 100fvmpt 6948 . . . . . 6 (𝑤 ∈ (0[,]1) → (𝐹𝑤) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
10297, 101breqan12d 5121 . . . . 5 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → ((𝐹𝑧) < (𝐹𝑤) ↔ if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
10392, 102sylibrd 258 . . . 4 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤)))
104103rgen2 3194 . . 3 𝑧 ∈ (0[,]1)∀𝑤 ∈ (0[,]1)(𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤))
105 soisoi 7273 . . 3 ((( < Or (0[,]1) ∧ < Po (0[,]+∞)) ∧ (𝐹:(0[,]1)–onto→(0[,]+∞) ∧ ∀𝑧 ∈ (0[,]1)∀𝑤 ∈ (0[,]1)(𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤)))) → 𝐹 Isom < , < ((0[,]1), (0[,]+∞)))
1064, 9, 14, 104, 105mp4an 691 . 2 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
107 letsr 18482 . . . . . 6 ≤ ∈ TosetRel
108107elexi 3464 . . . . 5 ≤ ∈ V
109108inex1 5274 . . . 4 ( ≤ ∩ ((0[,]1) × (0[,]1))) ∈ V
110108inex1 5274 . . . 4 ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) ∈ V
111 leiso 14358 . . . . . . . 8 (((0[,]1) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) → (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞))))
1121, 5, 111mp2an 690 . . . . . . 7 (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞)))
113106, 112mpbi 229 . . . . . 6 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞))
114 isores1 7279 . . . . . 6 (𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞)))
115113, 114mpbi 229 . . . . 5 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞))
116 isores2 7278 . . . . 5 (𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞)))
117115, 116mpbi 229 . . . 4 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞))
118 tsrps 18476 . . . . . . . 8 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
119107, 118ax-mp 5 . . . . . . 7 ≤ ∈ PosetRel
120 ledm 18479 . . . . . . . 8 * = dom ≤
121120psssdm 18471 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,]1) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1))
122119, 1, 121mp2an 690 . . . . . 6 dom ( ≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1)
123122eqcomi 2745 . . . . 5 (0[,]1) = dom ( ≤ ∩ ((0[,]1) × (0[,]1)))
124120psssdm 18471 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,]+∞) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) = (0[,]+∞))
125119, 5, 124mp2an 690 . . . . . 6 dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) = (0[,]+∞)
126125eqcomi 2745 . . . . 5 (0[,]+∞) = dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))
127123, 126ordthmeo 23153 . . . 4 ((( ≤ ∩ ((0[,]1) × (0[,]1))) ∈ V ∧ ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞))) → 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))))
128109, 110, 117, 127mp3an 1461 . . 3 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))))
129 dfii5 24248 . . . 4 II = (ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))
130 iccpnfhmeo.k . . . . 5 𝐾 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
131 ordtresticc 22574 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))
132130, 131eqtri 2764 . . . 4 𝐾 = (ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))
133129, 132oveq12i 7369 . . 3 (IIHomeo𝐾) = ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))))
134128, 133eleqtrri 2837 . 2 𝐹 ∈ (IIHomeo𝐾)
135106, 134pm3.2i 471 1 (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  Vcvv 3445  cun 3908  cin 3909  wss 3910  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188   Po wpo 5543   Or wor 5544   × cxp 5631  ccnv 5632  dom cdm 5633  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496   Isom wiso 6497  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  [,)cico 13266  [,]cicc 13267  t crest 17302  TopOpenctopn 17303  ordTopcordt 17381  PosetRelcps 18453   TosetRel ctsr 18454  fldccnfld 20796  Homeochmeo 23104  IIcii 24238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-ordt 17383  df-ps 18455  df-tsr 18456  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-hmeo 23106  df-xms 23673  df-ms 23674  df-ii 24240
This theorem is referenced by:  xrhmeo  24309  xrge0hmph  32513
  Copyright terms: Public domain W3C validator