Step | Hyp | Ref
| Expression |
1 | | iccssxr 12863 |
. . . 4
⊢ (0[,]1)
⊆ ℝ* |
2 | | xrltso 12576 |
. . . 4
⊢ < Or
ℝ* |
3 | | soss 5463 |
. . . 4
⊢ ((0[,]1)
⊆ ℝ* → ( < Or ℝ* → < Or
(0[,]1))) |
4 | 1, 2, 3 | mp2 9 |
. . 3
⊢ < Or
(0[,]1) |
5 | | iccssxr 12863 |
. . . . 5
⊢
(0[,]+∞) ⊆ ℝ* |
6 | | soss 5463 |
. . . . 5
⊢
((0[,]+∞) ⊆ ℝ* → ( < Or
ℝ* → < Or (0[,]+∞))) |
7 | 5, 2, 6 | mp2 9 |
. . . 4
⊢ < Or
(0[,]+∞) |
8 | | sopo 5462 |
. . . 4
⊢ ( < Or
(0[,]+∞) → < Po (0[,]+∞)) |
9 | 7, 8 | ax-mp 5 |
. . 3
⊢ < Po
(0[,]+∞) |
10 | | iccpnfhmeo.f |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) |
11 | 10 | iccpnfcnv 23646 |
. . . . 5
⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))))) |
12 | 11 | simpli 488 |
. . . 4
⊢ 𝐹:(0[,]1)–1-1-onto→(0[,]+∞) |
13 | | f1ofo 6610 |
. . . 4
⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)–onto→(0[,]+∞)) |
14 | 12, 13 | ax-mp 5 |
. . 3
⊢ 𝐹:(0[,]1)–onto→(0[,]+∞) |
15 | | elicc01 12899 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤
𝑧 ∧ 𝑧 ≤ 1)) |
16 | 15 | simp1bi 1143 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (0[,]1) → 𝑧 ∈
ℝ) |
17 | 16 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ℝ) |
18 | | elicc01 12899 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ (0[,]1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤
𝑤 ∧ 𝑤 ≤ 1)) |
19 | 18 | simp1bi 1143 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (0[,]1) → 𝑤 ∈
ℝ) |
20 | 19 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ ℝ) |
21 | | 1red 10681 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 1 ∈ ℝ) |
22 | | simp3 1136 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 < 𝑤) |
23 | 18 | simp3bi 1145 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (0[,]1) → 𝑤 ≤ 1) |
24 | 23 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ≤ 1) |
25 | 17, 20, 21, 22, 24 | ltletrd 10839 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 < 1) |
26 | 17, 25 | gtned 10814 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 1 ≠ 𝑧) |
27 | 26 | necomd 3007 |
. . . . . . . 8
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ≠ 1) |
28 | | ifnefalse 4433 |
. . . . . . . 8
⊢ (𝑧 ≠ 1 → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) = (𝑧 / (1 − 𝑧))) |
29 | 27, 28 | syl 17 |
. . . . . . 7
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) = (𝑧 / (1 − 𝑧))) |
30 | | breq2 5037 |
. . . . . . . 8
⊢ (+∞
= if(𝑤 = 1, +∞,
(𝑤 / (1 − 𝑤))) → ((𝑧 / (1 − 𝑧)) < +∞ ↔ (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))) |
31 | | breq2 5037 |
. . . . . . . 8
⊢ ((𝑤 / (1 − 𝑤)) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) → ((𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤)) ↔ (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))) |
32 | | 1re 10680 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
33 | | resubcl 10989 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℝ ∧ 𝑧
∈ ℝ) → (1 − 𝑧) ∈ ℝ) |
34 | 32, 17, 33 | sylancr 591 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (1 − 𝑧) ∈ ℝ) |
35 | | ax-1cn 10634 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
36 | 17 | recnd 10708 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ℂ) |
37 | | subeq0 10951 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℂ ∧ 𝑧
∈ ℂ) → ((1 − 𝑧) = 0 ↔ 1 = 𝑧)) |
38 | 37 | necon3bid 2996 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℂ ∧ 𝑧
∈ ℂ) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧)) |
39 | 35, 36, 38 | sylancr 591 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧)) |
40 | 26, 39 | mpbird 260 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (1 − 𝑧) ≠ 0) |
41 | 17, 34, 40 | redivcld 11507 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) ∈ ℝ) |
42 | 41 | ltpnfd 12558 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) < +∞) |
43 | 42 | adantr 485 |
. . . . . . . 8
⊢ (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ 𝑤 = 1) → (𝑧 / (1 − 𝑧)) < +∞) |
44 | | simpl3 1191 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑧 < 𝑤) |
45 | | eqid 2759 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) |
46 | | eqid 2759 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
47 | 45, 46 | icopnfhmeo 23645 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1),
(0[,)+∞)) ∧ (𝑥
∈ (0[,)1) ↦ (𝑥 /
(1 − 𝑥))) ∈
(((TopOpen‘ℂfld) ↾t
(0[,)1))Homeo((TopOpen‘ℂfld) ↾t
(0[,)+∞)))) |
48 | 47 | simpli 488 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1),
(0[,)+∞)) |
49 | 48 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1),
(0[,)+∞))) |
50 | | simp1 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (0[,]1)) |
51 | | 0xr 10727 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ* |
52 | | 1xr 10739 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ* |
53 | | 0le1 11202 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ≤
1 |
54 | | snunico 12912 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1)
→ ((0[,)1) ∪ {1}) = (0[,]1)) |
55 | 51, 52, 53, 54 | mp3an 1459 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0[,)1)
∪ {1}) = (0[,]1) |
56 | 50, 55 | eleqtrrdi 2864 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ((0[,)1) ∪ {1})) |
57 | | elun 4055 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ((0[,)1) ∪ {1})
↔ (𝑧 ∈ (0[,)1)
∨ 𝑧 ∈
{1})) |
58 | 56, 57 | sylib 221 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 ∈ (0[,)1) ∨ 𝑧 ∈ {1})) |
59 | 58 | ord 862 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑧 ∈ (0[,)1) → 𝑧 ∈ {1})) |
60 | | elsni 4540 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ {1} → 𝑧 = 1) |
61 | 59, 60 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑧 ∈ (0[,)1) → 𝑧 = 1)) |
62 | 61 | necon1ad 2969 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 ≠ 1 → 𝑧 ∈ (0[,)1))) |
63 | 27, 62 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (0[,)1)) |
64 | 63 | adantr 485 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑧 ∈ (0[,)1)) |
65 | | simp2 1135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ (0[,]1)) |
66 | 65, 55 | eleqtrrdi 2864 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ ((0[,)1) ∪ {1})) |
67 | | elun 4055 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ((0[,)1) ∪ {1})
↔ (𝑤 ∈ (0[,)1)
∨ 𝑤 ∈
{1})) |
68 | 66, 67 | sylib 221 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑤 ∈ (0[,)1) ∨ 𝑤 ∈ {1})) |
69 | 68 | ord 862 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 ∈ (0[,)1) → 𝑤 ∈ {1})) |
70 | | elsni 4540 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ {1} → 𝑤 = 1) |
71 | 69, 70 | syl6 35 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 ∈ (0[,)1) → 𝑤 = 1)) |
72 | 71 | con1d 147 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 = 1 → 𝑤 ∈ (0[,)1))) |
73 | 72 | imp 411 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑤 ∈ (0[,)1)) |
74 | | isorel 7074 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1),
(0[,)+∞)) ∧ (𝑧
∈ (0[,)1) ∧ 𝑤
∈ (0[,)1))) → (𝑧
< 𝑤 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤))) |
75 | 49, 64, 73, 74 | syl12anc 836 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑧 < 𝑤 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤))) |
76 | 44, 75 | mpbid 235 |
. . . . . . . . 9
⊢ (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤)) |
77 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
78 | | oveq2 7159 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (1 − 𝑥) = (1 − 𝑧)) |
79 | 77, 78 | oveq12d 7169 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥 / (1 − 𝑥)) = (𝑧 / (1 − 𝑧))) |
80 | | ovex 7184 |
. . . . . . . . . . 11
⊢ (𝑧 / (1 − 𝑧)) ∈ V |
81 | 79, 45, 80 | fvmpt 6760 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (0[,)1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) = (𝑧 / (1 − 𝑧))) |
82 | 64, 81 | syl 17 |
. . . . . . . . 9
⊢ (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) = (𝑧 / (1 − 𝑧))) |
83 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → 𝑥 = 𝑤) |
84 | | oveq2 7159 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (1 − 𝑥) = (1 − 𝑤)) |
85 | 83, 84 | oveq12d 7169 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑥 / (1 − 𝑥)) = (𝑤 / (1 − 𝑤))) |
86 | | ovex 7184 |
. . . . . . . . . . 11
⊢ (𝑤 / (1 − 𝑤)) ∈ V |
87 | 85, 45, 86 | fvmpt 6760 |
. . . . . . . . . 10
⊢ (𝑤 ∈ (0[,)1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤) = (𝑤 / (1 − 𝑤))) |
88 | 73, 87 | syl 17 |
. . . . . . . . 9
⊢ (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤) = (𝑤 / (1 − 𝑤))) |
89 | 76, 82, 88 | 3brtr3d 5064 |
. . . . . . . 8
⊢ (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤))) |
90 | 30, 31, 43, 89 | ifbothda 4459 |
. . . . . . 7
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))) |
91 | 29, 90 | eqbrtrd 5055 |
. . . . . 6
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))) |
92 | 91 | 3expia 1119 |
. . . . 5
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))) |
93 | | eqeq1 2763 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 = 1 ↔ 𝑧 = 1)) |
94 | 93, 79 | ifbieq2d 4447 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧)))) |
95 | | pnfex 10733 |
. . . . . . . 8
⊢ +∞
∈ V |
96 | 95, 80 | ifex 4471 |
. . . . . . 7
⊢ if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) ∈ V |
97 | 94, 10, 96 | fvmpt 6760 |
. . . . . 6
⊢ (𝑧 ∈ (0[,]1) → (𝐹‘𝑧) = if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧)))) |
98 | | eqeq1 2763 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑥 = 1 ↔ 𝑤 = 1)) |
99 | 98, 85 | ifbieq2d 4447 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))) |
100 | 95, 86 | ifex 4471 |
. . . . . . 7
⊢ if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) ∈ V |
101 | 99, 10, 100 | fvmpt 6760 |
. . . . . 6
⊢ (𝑤 ∈ (0[,]1) → (𝐹‘𝑤) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))) |
102 | 97, 101 | breqan12d 5049 |
. . . . 5
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → ((𝐹‘𝑧) < (𝐹‘𝑤) ↔ if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))) |
103 | 92, 102 | sylibrd 262 |
. . . 4
⊢ ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 → (𝐹‘𝑧) < (𝐹‘𝑤))) |
104 | 103 | rgen2 3133 |
. . 3
⊢
∀𝑧 ∈
(0[,]1)∀𝑤 ∈
(0[,]1)(𝑧 < 𝑤 → (𝐹‘𝑧) < (𝐹‘𝑤)) |
105 | | soisoi 7076 |
. . 3
⊢ ((( <
Or (0[,]1) ∧ < Po (0[,]+∞)) ∧ (𝐹:(0[,]1)–onto→(0[,]+∞) ∧ ∀𝑧 ∈ (0[,]1)∀𝑤 ∈ (0[,]1)(𝑧 < 𝑤 → (𝐹‘𝑧) < (𝐹‘𝑤)))) → 𝐹 Isom < , < ((0[,]1),
(0[,]+∞))) |
106 | 4, 9, 14, 104, 105 | mp4an 693 |
. 2
⊢ 𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) |
107 | | letsr 17904 |
. . . . . 6
⊢ ≤
∈ TosetRel |
108 | 107 | elexi 3430 |
. . . . 5
⊢ ≤
∈ V |
109 | 108 | inex1 5188 |
. . . 4
⊢ ( ≤
∩ ((0[,]1) × (0[,]1))) ∈ V |
110 | 108 | inex1 5188 |
. . . 4
⊢ ( ≤
∩ ((0[,]+∞) × (0[,]+∞))) ∈ V |
111 | | leiso 13870 |
. . . . . . . 8
⊢ (((0[,]1)
⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*)
→ (𝐹 Isom < , <
((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,]1),
(0[,]+∞)))) |
112 | 1, 5, 111 | mp2an 692 |
. . . . . . 7
⊢ (𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) ↔ 𝐹
Isom ≤ , ≤ ((0[,]1), (0[,]+∞))) |
113 | 106, 112 | mpbi 233 |
. . . . . 6
⊢ 𝐹 Isom ≤ , ≤ ((0[,]1),
(0[,]+∞)) |
114 | | isores1 7082 |
. . . . . 6
⊢ (𝐹 Isom ≤ , ≤ ((0[,]1),
(0[,]+∞)) ↔ 𝐹
Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1),
(0[,]+∞))) |
115 | 113, 114 | mpbi 233 |
. . . . 5
⊢ 𝐹 Isom ( ≤ ∩ ((0[,]1)
× (0[,]1))), ≤ ((0[,]1), (0[,]+∞)) |
116 | | isores2 7081 |
. . . . 5
⊢ (𝐹 Isom ( ≤ ∩ ((0[,]1)
× (0[,]1))), ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) ×
(0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1),
(0[,]+∞))) |
117 | 115, 116 | mpbi 233 |
. . . 4
⊢ 𝐹 Isom ( ≤ ∩ ((0[,]1)
× (0[,]1))), ( ≤ ∩ ((0[,]+∞) ×
(0[,]+∞)))((0[,]1), (0[,]+∞)) |
118 | | tsrps 17898 |
. . . . . . . 8
⊢ ( ≤
∈ TosetRel → ≤ ∈ PosetRel) |
119 | 107, 118 | ax-mp 5 |
. . . . . . 7
⊢ ≤
∈ PosetRel |
120 | | ledm 17901 |
. . . . . . . 8
⊢
ℝ* = dom ≤ |
121 | 120 | psssdm 17893 |
. . . . . . 7
⊢ (( ≤
∈ PosetRel ∧ (0[,]1) ⊆ ℝ*) → dom ( ≤
∩ ((0[,]1) × (0[,]1))) = (0[,]1)) |
122 | 119, 1, 121 | mp2an 692 |
. . . . . 6
⊢ dom (
≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1) |
123 | 122 | eqcomi 2768 |
. . . . 5
⊢ (0[,]1) =
dom ( ≤ ∩ ((0[,]1) × (0[,]1))) |
124 | 120 | psssdm 17893 |
. . . . . . 7
⊢ (( ≤
∈ PosetRel ∧ (0[,]+∞) ⊆ ℝ*) → dom (
≤ ∩ ((0[,]+∞) × (0[,]+∞))) =
(0[,]+∞)) |
125 | 119, 5, 124 | mp2an 692 |
. . . . . 6
⊢ dom (
≤ ∩ ((0[,]+∞) × (0[,]+∞))) =
(0[,]+∞) |
126 | 125 | eqcomi 2768 |
. . . . 5
⊢
(0[,]+∞) = dom ( ≤ ∩ ((0[,]+∞) ×
(0[,]+∞))) |
127 | 123, 126 | ordthmeo 22503 |
. . . 4
⊢ ((( ≤
∩ ((0[,]1) × (0[,]1))) ∈ V ∧ ( ≤ ∩ ((0[,]+∞)
× (0[,]+∞))) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ((0[,]1) ×
(0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1),
(0[,]+∞))) → 𝐹
∈ ((ordTop‘( ≤ ∩ ((0[,]1) ×
(0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) ×
(0[,]+∞)))))) |
128 | 109, 110,
117, 127 | mp3an 1459 |
. . 3
⊢ 𝐹 ∈ ((ordTop‘( ≤
∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩
((0[,]+∞) × (0[,]+∞))))) |
129 | | dfii5 23587 |
. . . 4
⊢ II =
(ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1)))) |
130 | | iccpnfhmeo.k |
. . . . 5
⊢ 𝐾 = ((ordTop‘ ≤ )
↾t (0[,]+∞)) |
131 | | ordtresticc 21924 |
. . . . 5
⊢
((ordTop‘ ≤ ) ↾t (0[,]+∞)) =
(ordTop‘( ≤ ∩ ((0[,]+∞) ×
(0[,]+∞)))) |
132 | 130, 131 | eqtri 2782 |
. . . 4
⊢ 𝐾 = (ordTop‘( ≤ ∩
((0[,]+∞) × (0[,]+∞)))) |
133 | 129, 132 | oveq12i 7163 |
. . 3
⊢
(IIHomeo𝐾) =
((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘(
≤ ∩ ((0[,]+∞) × (0[,]+∞))))) |
134 | 128, 133 | eleqtrri 2852 |
. 2
⊢ 𝐹 ∈ (IIHomeo𝐾) |
135 | 106, 134 | pm3.2i 475 |
1
⊢ (𝐹 Isom < , < ((0[,]1),
(0[,]+∞)) ∧ 𝐹
∈ (IIHomeo𝐾)) |