MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccpnfhmeo Structured version   Visualization version   GIF version

Theorem iccpnfhmeo 24876
Description: The defined bijection from [0, 1] to [0, +∞] is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
iccpnfhmeo.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
iccpnfhmeo.k 𝐾 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
iccpnfhmeo (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo𝐾))

Proof of Theorem iccpnfhmeo
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 13367 . . . 4 (0[,]1) ⊆ ℝ*
2 xrltso 13077 . . . 4 < Or ℝ*
3 soss 5559 . . . 4 ((0[,]1) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]1)))
41, 2, 3mp2 9 . . 3 < Or (0[,]1)
5 iccssxr 13367 . . . . 5 (0[,]+∞) ⊆ ℝ*
6 soss 5559 . . . . 5 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
75, 2, 6mp2 9 . . . 4 < Or (0[,]+∞)
8 sopo 5558 . . . 4 ( < Or (0[,]+∞) → < Po (0[,]+∞))
97, 8ax-mp 5 . . 3 < Po (0[,]+∞)
10 iccpnfhmeo.f . . . . . 6 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
1110iccpnfcnv 24875 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
1211simpli 483 . . . 4 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
13 f1ofo 6789 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)–onto→(0[,]+∞))
1412, 13ax-mp 5 . . 3 𝐹:(0[,]1)–onto→(0[,]+∞)
15 elicc01 13403 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1))
1615simp1bi 1145 . . . . . . . . . . 11 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
17163ad2ant1 1133 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ℝ)
18 elicc01 13403 . . . . . . . . . . . . 13 (𝑤 ∈ (0[,]1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 ≤ 1))
1918simp1bi 1145 . . . . . . . . . . . 12 (𝑤 ∈ (0[,]1) → 𝑤 ∈ ℝ)
20193ad2ant2 1134 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ ℝ)
21 1red 11151 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 1 ∈ ℝ)
22 simp3 1138 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 < 𝑤)
2318simp3bi 1147 . . . . . . . . . . . 12 (𝑤 ∈ (0[,]1) → 𝑤 ≤ 1)
24233ad2ant2 1134 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ≤ 1)
2517, 20, 21, 22, 24ltletrd 11310 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 < 1)
2617, 25gtned 11285 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 1 ≠ 𝑧)
2726necomd 2980 . . . . . . . 8 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ≠ 1)
28 ifnefalse 4496 . . . . . . . 8 (𝑧 ≠ 1 → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) = (𝑧 / (1 − 𝑧)))
2927, 28syl 17 . . . . . . 7 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) = (𝑧 / (1 − 𝑧)))
30 breq2 5106 . . . . . . . 8 (+∞ = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) → ((𝑧 / (1 − 𝑧)) < +∞ ↔ (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
31 breq2 5106 . . . . . . . 8 ((𝑤 / (1 − 𝑤)) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) → ((𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤)) ↔ (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
32 1re 11150 . . . . . . . . . . . 12 1 ∈ ℝ
33 resubcl 11462 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 − 𝑧) ∈ ℝ)
3432, 17, 33sylancr 587 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (1 − 𝑧) ∈ ℝ)
35 ax-1cn 11102 . . . . . . . . . . . . 13 1 ∈ ℂ
3617recnd 11178 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ℂ)
37 subeq0 11424 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) = 0 ↔ 1 = 𝑧))
3837necon3bid 2969 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
3935, 36, 38sylancr 587 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
4026, 39mpbird 257 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (1 − 𝑧) ≠ 0)
4117, 34, 40redivcld 11986 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) ∈ ℝ)
4241ltpnfd 13057 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) < +∞)
4342adantr 480 . . . . . . . 8 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ 𝑤 = 1) → (𝑧 / (1 − 𝑧)) < +∞)
44 simpl3 1194 . . . . . . . . . 10 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑧 < 𝑤)
45 eqid 2729 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
46 eqid 2729 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4745, 46icopnfhmeo 24874 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)) ∧ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t (0[,)1))Homeo((TopOpen‘ℂfld) ↾t (0[,)+∞))))
4847simpli 483 . . . . . . . . . . . 12 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞))
4948a1i 11 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)))
50 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (0[,]1))
51 0xr 11197 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
52 1xr 11209 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
53 0le1 11677 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
54 snunico 13416 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ((0[,)1) ∪ {1}) = (0[,]1))
5551, 52, 53, 54mp3an 1463 . . . . . . . . . . . . . . . . . 18 ((0[,)1) ∪ {1}) = (0[,]1)
5650, 55eleqtrrdi 2839 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ((0[,)1) ∪ {1}))
57 elun 4112 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((0[,)1) ∪ {1}) ↔ (𝑧 ∈ (0[,)1) ∨ 𝑧 ∈ {1}))
5856, 57sylib 218 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 ∈ (0[,)1) ∨ 𝑧 ∈ {1}))
5958ord 864 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑧 ∈ (0[,)1) → 𝑧 ∈ {1}))
60 elsni 4602 . . . . . . . . . . . . . . 15 (𝑧 ∈ {1} → 𝑧 = 1)
6159, 60syl6 35 . . . . . . . . . . . . . 14 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑧 ∈ (0[,)1) → 𝑧 = 1))
6261necon1ad 2942 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 ≠ 1 → 𝑧 ∈ (0[,)1)))
6327, 62mpd 15 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (0[,)1))
6463adantr 480 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑧 ∈ (0[,)1))
65 simp2 1137 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ (0[,]1))
6665, 55eleqtrrdi 2839 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ ((0[,)1) ∪ {1}))
67 elun 4112 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ((0[,)1) ∪ {1}) ↔ (𝑤 ∈ (0[,)1) ∨ 𝑤 ∈ {1}))
6866, 67sylib 218 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑤 ∈ (0[,)1) ∨ 𝑤 ∈ {1}))
6968ord 864 . . . . . . . . . . . . . 14 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 ∈ (0[,)1) → 𝑤 ∈ {1}))
70 elsni 4602 . . . . . . . . . . . . . 14 (𝑤 ∈ {1} → 𝑤 = 1)
7169, 70syl6 35 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 ∈ (0[,)1) → 𝑤 = 1))
7271con1d 145 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 = 1 → 𝑤 ∈ (0[,)1)))
7372imp 406 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑤 ∈ (0[,)1))
74 isorel 7283 . . . . . . . . . . 11 (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)) ∧ (𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1))) → (𝑧 < 𝑤 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤)))
7549, 64, 73, 74syl12anc 836 . . . . . . . . . 10 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑧 < 𝑤 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤)))
7644, 75mpbid 232 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤))
77 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑥 = 𝑧)
78 oveq2 7377 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (1 − 𝑥) = (1 − 𝑧))
7977, 78oveq12d 7387 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 / (1 − 𝑥)) = (𝑧 / (1 − 𝑧)))
80 ovex 7402 . . . . . . . . . . 11 (𝑧 / (1 − 𝑧)) ∈ V
8179, 45, 80fvmpt 6950 . . . . . . . . . 10 (𝑧 ∈ (0[,)1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) = (𝑧 / (1 − 𝑧)))
8264, 81syl 17 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) = (𝑧 / (1 − 𝑧)))
83 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑤𝑥 = 𝑤)
84 oveq2 7377 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (1 − 𝑥) = (1 − 𝑤))
8583, 84oveq12d 7387 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 / (1 − 𝑥)) = (𝑤 / (1 − 𝑤)))
86 ovex 7402 . . . . . . . . . . 11 (𝑤 / (1 − 𝑤)) ∈ V
8785, 45, 86fvmpt 6950 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤) = (𝑤 / (1 − 𝑤)))
8873, 87syl 17 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤) = (𝑤 / (1 − 𝑤)))
8976, 82, 883brtr3d 5133 . . . . . . . 8 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤)))
9030, 31, 43, 89ifbothda 4523 . . . . . . 7 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
9129, 90eqbrtrd 5124 . . . . . 6 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
92913expia 1121 . . . . 5 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
93 eqeq1 2733 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 1 ↔ 𝑧 = 1))
9493, 79ifbieq2d 4511 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))))
95 pnfex 11203 . . . . . . . 8 +∞ ∈ V
9695, 80ifex 4535 . . . . . . 7 if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) ∈ V
9794, 10, 96fvmpt 6950 . . . . . 6 (𝑧 ∈ (0[,]1) → (𝐹𝑧) = if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))))
98 eqeq1 2733 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 = 1 ↔ 𝑤 = 1))
9998, 85ifbieq2d 4511 . . . . . . 7 (𝑥 = 𝑤 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
10095, 86ifex 4535 . . . . . . 7 if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) ∈ V
10199, 10, 100fvmpt 6950 . . . . . 6 (𝑤 ∈ (0[,]1) → (𝐹𝑤) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
10297, 101breqan12d 5118 . . . . 5 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → ((𝐹𝑧) < (𝐹𝑤) ↔ if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
10392, 102sylibrd 259 . . . 4 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤)))
104103rgen2 3175 . . 3 𝑧 ∈ (0[,]1)∀𝑤 ∈ (0[,]1)(𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤))
105 soisoi 7285 . . 3 ((( < Or (0[,]1) ∧ < Po (0[,]+∞)) ∧ (𝐹:(0[,]1)–onto→(0[,]+∞) ∧ ∀𝑧 ∈ (0[,]1)∀𝑤 ∈ (0[,]1)(𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤)))) → 𝐹 Isom < , < ((0[,]1), (0[,]+∞)))
1064, 9, 14, 104, 105mp4an 693 . 2 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
107 letsr 18534 . . . . . 6 ≤ ∈ TosetRel
108107elexi 3467 . . . . 5 ≤ ∈ V
109108inex1 5267 . . . 4 ( ≤ ∩ ((0[,]1) × (0[,]1))) ∈ V
110108inex1 5267 . . . 4 ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) ∈ V
111 leiso 14400 . . . . . . . 8 (((0[,]1) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) → (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞))))
1121, 5, 111mp2an 692 . . . . . . 7 (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞)))
113106, 112mpbi 230 . . . . . 6 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞))
114 isores1 7291 . . . . . 6 (𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞)))
115113, 114mpbi 230 . . . . 5 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞))
116 isores2 7290 . . . . 5 (𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞)))
117115, 116mpbi 230 . . . 4 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞))
118 tsrps 18528 . . . . . . . 8 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
119107, 118ax-mp 5 . . . . . . 7 ≤ ∈ PosetRel
120 ledm 18531 . . . . . . . 8 * = dom ≤
121120psssdm 18523 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,]1) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1))
122119, 1, 121mp2an 692 . . . . . 6 dom ( ≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1)
123122eqcomi 2738 . . . . 5 (0[,]1) = dom ( ≤ ∩ ((0[,]1) × (0[,]1)))
124120psssdm 18523 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,]+∞) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) = (0[,]+∞))
125119, 5, 124mp2an 692 . . . . . 6 dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) = (0[,]+∞)
126125eqcomi 2738 . . . . 5 (0[,]+∞) = dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))
127123, 126ordthmeo 23722 . . . 4 ((( ≤ ∩ ((0[,]1) × (0[,]1))) ∈ V ∧ ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞))) → 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))))
128109, 110, 117, 127mp3an 1463 . . 3 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))))
129 dfii5 24811 . . . 4 II = (ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))
130 iccpnfhmeo.k . . . . 5 𝐾 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
131 ordtresticc 23143 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))
132130, 131eqtri 2752 . . . 4 𝐾 = (ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))
133129, 132oveq12i 7381 . . 3 (IIHomeo𝐾) = ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))))
134128, 133eleqtrri 2827 . 2 𝐹 ∈ (IIHomeo𝐾)
135106, 134pm3.2i 470 1 (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  cun 3909  cin 3910  wss 3911  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183   Po wpo 5537   Or wor 5538   × cxp 5629  ccnv 5630  dom cdm 5631  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499   Isom wiso 6500  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  [,)cico 13284  [,]cicc 13285  t crest 17359  TopOpenctopn 17360  ordTopcordt 17438  PosetRelcps 18505   TosetRel ctsr 18506  fldccnfld 21296  Homeochmeo 23673  IIcii 24801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-ordt 17440  df-ps 18507  df-tsr 18508  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cn 23147  df-hmeo 23675  df-xms 24241  df-ms 24242  df-ii 24803
This theorem is referenced by:  xrhmeo  24877  xrge0hmph  33915
  Copyright terms: Public domain W3C validator