Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccpnfhmeo Structured version   Visualization version   GIF version

Theorem iccpnfhmeo 23647
 Description: The defined bijection from [0, 1] to [0, +∞] is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
iccpnfhmeo.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
iccpnfhmeo.k 𝐾 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
iccpnfhmeo (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo𝐾))

Proof of Theorem iccpnfhmeo
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 12863 . . . 4 (0[,]1) ⊆ ℝ*
2 xrltso 12576 . . . 4 < Or ℝ*
3 soss 5463 . . . 4 ((0[,]1) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]1)))
41, 2, 3mp2 9 . . 3 < Or (0[,]1)
5 iccssxr 12863 . . . . 5 (0[,]+∞) ⊆ ℝ*
6 soss 5463 . . . . 5 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
75, 2, 6mp2 9 . . . 4 < Or (0[,]+∞)
8 sopo 5462 . . . 4 ( < Or (0[,]+∞) → < Po (0[,]+∞))
97, 8ax-mp 5 . . 3 < Po (0[,]+∞)
10 iccpnfhmeo.f . . . . . 6 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
1110iccpnfcnv 23646 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
1211simpli 488 . . . 4 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
13 f1ofo 6610 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)–onto→(0[,]+∞))
1412, 13ax-mp 5 . . 3 𝐹:(0[,]1)–onto→(0[,]+∞)
15 elicc01 12899 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1))
1615simp1bi 1143 . . . . . . . . . . 11 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
17163ad2ant1 1131 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ℝ)
18 elicc01 12899 . . . . . . . . . . . . 13 (𝑤 ∈ (0[,]1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 ≤ 1))
1918simp1bi 1143 . . . . . . . . . . . 12 (𝑤 ∈ (0[,]1) → 𝑤 ∈ ℝ)
20193ad2ant2 1132 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ ℝ)
21 1red 10681 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 1 ∈ ℝ)
22 simp3 1136 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 < 𝑤)
2318simp3bi 1145 . . . . . . . . . . . 12 (𝑤 ∈ (0[,]1) → 𝑤 ≤ 1)
24233ad2ant2 1132 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ≤ 1)
2517, 20, 21, 22, 24ltletrd 10839 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 < 1)
2617, 25gtned 10814 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 1 ≠ 𝑧)
2726necomd 3007 . . . . . . . 8 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ≠ 1)
28 ifnefalse 4433 . . . . . . . 8 (𝑧 ≠ 1 → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) = (𝑧 / (1 − 𝑧)))
2927, 28syl 17 . . . . . . 7 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) = (𝑧 / (1 − 𝑧)))
30 breq2 5037 . . . . . . . 8 (+∞ = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) → ((𝑧 / (1 − 𝑧)) < +∞ ↔ (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
31 breq2 5037 . . . . . . . 8 ((𝑤 / (1 − 𝑤)) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) → ((𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤)) ↔ (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
32 1re 10680 . . . . . . . . . . . 12 1 ∈ ℝ
33 resubcl 10989 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 − 𝑧) ∈ ℝ)
3432, 17, 33sylancr 591 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (1 − 𝑧) ∈ ℝ)
35 ax-1cn 10634 . . . . . . . . . . . . 13 1 ∈ ℂ
3617recnd 10708 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ℂ)
37 subeq0 10951 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) = 0 ↔ 1 = 𝑧))
3837necon3bid 2996 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
3935, 36, 38sylancr 591 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
4026, 39mpbird 260 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (1 − 𝑧) ≠ 0)
4117, 34, 40redivcld 11507 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) ∈ ℝ)
4241ltpnfd 12558 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) < +∞)
4342adantr 485 . . . . . . . 8 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ 𝑤 = 1) → (𝑧 / (1 − 𝑧)) < +∞)
44 simpl3 1191 . . . . . . . . . 10 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑧 < 𝑤)
45 eqid 2759 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
46 eqid 2759 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4745, 46icopnfhmeo 23645 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)) ∧ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t (0[,)1))Homeo((TopOpen‘ℂfld) ↾t (0[,)+∞))))
4847simpli 488 . . . . . . . . . . . 12 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞))
4948a1i 11 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)))
50 simp1 1134 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (0[,]1))
51 0xr 10727 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
52 1xr 10739 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
53 0le1 11202 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
54 snunico 12912 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ((0[,)1) ∪ {1}) = (0[,]1))
5551, 52, 53, 54mp3an 1459 . . . . . . . . . . . . . . . . . 18 ((0[,)1) ∪ {1}) = (0[,]1)
5650, 55eleqtrrdi 2864 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ((0[,)1) ∪ {1}))
57 elun 4055 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((0[,)1) ∪ {1}) ↔ (𝑧 ∈ (0[,)1) ∨ 𝑧 ∈ {1}))
5856, 57sylib 221 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 ∈ (0[,)1) ∨ 𝑧 ∈ {1}))
5958ord 862 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑧 ∈ (0[,)1) → 𝑧 ∈ {1}))
60 elsni 4540 . . . . . . . . . . . . . . 15 (𝑧 ∈ {1} → 𝑧 = 1)
6159, 60syl6 35 . . . . . . . . . . . . . 14 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑧 ∈ (0[,)1) → 𝑧 = 1))
6261necon1ad 2969 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 ≠ 1 → 𝑧 ∈ (0[,)1)))
6327, 62mpd 15 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (0[,)1))
6463adantr 485 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑧 ∈ (0[,)1))
65 simp2 1135 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ (0[,]1))
6665, 55eleqtrrdi 2864 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ ((0[,)1) ∪ {1}))
67 elun 4055 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ((0[,)1) ∪ {1}) ↔ (𝑤 ∈ (0[,)1) ∨ 𝑤 ∈ {1}))
6866, 67sylib 221 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑤 ∈ (0[,)1) ∨ 𝑤 ∈ {1}))
6968ord 862 . . . . . . . . . . . . . 14 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 ∈ (0[,)1) → 𝑤 ∈ {1}))
70 elsni 4540 . . . . . . . . . . . . . 14 (𝑤 ∈ {1} → 𝑤 = 1)
7169, 70syl6 35 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 ∈ (0[,)1) → 𝑤 = 1))
7271con1d 147 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 = 1 → 𝑤 ∈ (0[,)1)))
7372imp 411 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑤 ∈ (0[,)1))
74 isorel 7074 . . . . . . . . . . 11 (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)) ∧ (𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1))) → (𝑧 < 𝑤 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤)))
7549, 64, 73, 74syl12anc 836 . . . . . . . . . 10 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑧 < 𝑤 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤)))
7644, 75mpbid 235 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤))
77 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑥 = 𝑧)
78 oveq2 7159 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (1 − 𝑥) = (1 − 𝑧))
7977, 78oveq12d 7169 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 / (1 − 𝑥)) = (𝑧 / (1 − 𝑧)))
80 ovex 7184 . . . . . . . . . . 11 (𝑧 / (1 − 𝑧)) ∈ V
8179, 45, 80fvmpt 6760 . . . . . . . . . 10 (𝑧 ∈ (0[,)1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) = (𝑧 / (1 − 𝑧)))
8264, 81syl 17 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) = (𝑧 / (1 − 𝑧)))
83 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑤𝑥 = 𝑤)
84 oveq2 7159 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (1 − 𝑥) = (1 − 𝑤))
8583, 84oveq12d 7169 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 / (1 − 𝑥)) = (𝑤 / (1 − 𝑤)))
86 ovex 7184 . . . . . . . . . . 11 (𝑤 / (1 − 𝑤)) ∈ V
8785, 45, 86fvmpt 6760 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤) = (𝑤 / (1 − 𝑤)))
8873, 87syl 17 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤) = (𝑤 / (1 − 𝑤)))
8976, 82, 883brtr3d 5064 . . . . . . . 8 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤)))
9030, 31, 43, 89ifbothda 4459 . . . . . . 7 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
9129, 90eqbrtrd 5055 . . . . . 6 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
92913expia 1119 . . . . 5 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
93 eqeq1 2763 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 1 ↔ 𝑧 = 1))
9493, 79ifbieq2d 4447 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))))
95 pnfex 10733 . . . . . . . 8 +∞ ∈ V
9695, 80ifex 4471 . . . . . . 7 if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) ∈ V
9794, 10, 96fvmpt 6760 . . . . . 6 (𝑧 ∈ (0[,]1) → (𝐹𝑧) = if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))))
98 eqeq1 2763 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 = 1 ↔ 𝑤 = 1))
9998, 85ifbieq2d 4447 . . . . . . 7 (𝑥 = 𝑤 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
10095, 86ifex 4471 . . . . . . 7 if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) ∈ V
10199, 10, 100fvmpt 6760 . . . . . 6 (𝑤 ∈ (0[,]1) → (𝐹𝑤) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
10297, 101breqan12d 5049 . . . . 5 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → ((𝐹𝑧) < (𝐹𝑤) ↔ if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
10392, 102sylibrd 262 . . . 4 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤)))
104103rgen2 3133 . . 3 𝑧 ∈ (0[,]1)∀𝑤 ∈ (0[,]1)(𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤))
105 soisoi 7076 . . 3 ((( < Or (0[,]1) ∧ < Po (0[,]+∞)) ∧ (𝐹:(0[,]1)–onto→(0[,]+∞) ∧ ∀𝑧 ∈ (0[,]1)∀𝑤 ∈ (0[,]1)(𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤)))) → 𝐹 Isom < , < ((0[,]1), (0[,]+∞)))
1064, 9, 14, 104, 105mp4an 693 . 2 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
107 letsr 17904 . . . . . 6 ≤ ∈ TosetRel
108107elexi 3430 . . . . 5 ≤ ∈ V
109108inex1 5188 . . . 4 ( ≤ ∩ ((0[,]1) × (0[,]1))) ∈ V
110108inex1 5188 . . . 4 ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) ∈ V
111 leiso 13870 . . . . . . . 8 (((0[,]1) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) → (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞))))
1121, 5, 111mp2an 692 . . . . . . 7 (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞)))
113106, 112mpbi 233 . . . . . 6 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞))
114 isores1 7082 . . . . . 6 (𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞)))
115113, 114mpbi 233 . . . . 5 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞))
116 isores2 7081 . . . . 5 (𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞)))
117115, 116mpbi 233 . . . 4 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞))
118 tsrps 17898 . . . . . . . 8 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
119107, 118ax-mp 5 . . . . . . 7 ≤ ∈ PosetRel
120 ledm 17901 . . . . . . . 8 * = dom ≤
121120psssdm 17893 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,]1) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1))
122119, 1, 121mp2an 692 . . . . . 6 dom ( ≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1)
123122eqcomi 2768 . . . . 5 (0[,]1) = dom ( ≤ ∩ ((0[,]1) × (0[,]1)))
124120psssdm 17893 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,]+∞) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) = (0[,]+∞))
125119, 5, 124mp2an 692 . . . . . 6 dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) = (0[,]+∞)
126125eqcomi 2768 . . . . 5 (0[,]+∞) = dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))
127123, 126ordthmeo 22503 . . . 4 ((( ≤ ∩ ((0[,]1) × (0[,]1))) ∈ V ∧ ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞))) → 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))))
128109, 110, 117, 127mp3an 1459 . . 3 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))))
129 dfii5 23587 . . . 4 II = (ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))
130 iccpnfhmeo.k . . . . 5 𝐾 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
131 ordtresticc 21924 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))
132130, 131eqtri 2782 . . . 4 𝐾 = (ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))
133129, 132oveq12i 7163 . . 3 (IIHomeo𝐾) = ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))))
134128, 133eleqtrri 2852 . 2 𝐹 ∈ (IIHomeo𝐾)
135106, 134pm3.2i 475 1 (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo𝐾))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 400   ∨ wo 845   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ∀wral 3071  Vcvv 3410   ∪ cun 3857   ∩ cin 3858   ⊆ wss 3859  ifcif 4421  {csn 4523   class class class wbr 5033   ↦ cmpt 5113   Po wpo 5442   Or wor 5443   × cxp 5523  ◡ccnv 5524  dom cdm 5525  –onto→wfo 6334  –1-1-onto→wf1o 6335  ‘cfv 6336   Isom wiso 6337  (class class class)co 7151  ℂcc 10574  ℝcr 10575  0cc0 10576  1c1 10577   + caddc 10579  +∞cpnf 10711  ℝ*cxr 10713   < clt 10714   ≤ cle 10715   − cmin 10909   / cdiv 11336  [,)cico 12782  [,]cicc 12783   ↾t crest 16753  TopOpenctopn 16754  ordTopcordt 16831  PosetRelcps 17875   TosetRel ctsr 17876  ℂfldccnfld 20167  Homeochmeo 22454  IIcii 23577 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653  ax-pre-sup 10654 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fi 8909  df-sup 8940  df-inf 8941  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-z 12022  df-dec 12139  df-uz 12284  df-q 12390  df-rp 12432  df-xneg 12549  df-xadd 12550  df-xmul 12551  df-ioo 12784  df-ioc 12785  df-ico 12786  df-icc 12787  df-fz 12941  df-seq 13420  df-exp 13481  df-cj 14507  df-re 14508  df-im 14509  df-sqrt 14643  df-abs 14644  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-plusg 16637  df-mulr 16638  df-starv 16639  df-tset 16643  df-ple 16644  df-ds 16646  df-unif 16647  df-rest 16755  df-topn 16756  df-topgen 16776  df-ordt 16833  df-ps 17877  df-tsr 17878  df-psmet 20159  df-xmet 20160  df-met 20161  df-bl 20162  df-mopn 20163  df-cnfld 20168  df-top 21595  df-topon 21612  df-topsp 21634  df-bases 21647  df-cn 21928  df-hmeo 22456  df-xms 23023  df-ms 23024  df-ii 23579 This theorem is referenced by:  xrhmeo  23648  xrge0hmph  31404
 Copyright terms: Public domain W3C validator