MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oprg Structured version   Visualization version   GIF version

Theorem f1oprg 6645
Description: An unordered pair of ordered pairs with different elements is a one-to-one onto function, analogous to f1oprswap 6644. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
f1oprg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))

Proof of Theorem f1oprg
StepHypRef Expression
1 f1osng 6641 . . . . 5 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
21ad2antrr 724 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
3 f1osng 6641 . . . . 5 ((𝐶𝑋𝐷𝑌) → {⟨𝐶, 𝐷⟩}:{𝐶}–1-1-onto→{𝐷})
43ad2antlr 725 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → {⟨𝐶, 𝐷⟩}:{𝐶}–1-1-onto→{𝐷})
5 disjsn2 4634 . . . . 5 (𝐴𝐶 → ({𝐴} ∩ {𝐶}) = ∅)
65ad2antrl 726 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐴} ∩ {𝐶}) = ∅)
7 disjsn2 4634 . . . . 5 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
87ad2antll 727 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐵} ∩ {𝐷}) = ∅)
9 f1oun 6620 . . . 4 ((({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} ∧ {⟨𝐶, 𝐷⟩}:{𝐶}–1-1-onto→{𝐷}) ∧ (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}):({𝐴} ∪ {𝐶})–1-1-onto→({𝐵} ∪ {𝐷}))
102, 4, 6, 8, 9syl22anc 836 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}):({𝐴} ∪ {𝐶})–1-1-onto→({𝐵} ∪ {𝐷}))
11 df-pr 4556 . . . . . 6 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
1211eqcomi 2830 . . . . 5 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
1312a1i 11 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
14 df-pr 4556 . . . . . 6 {𝐴, 𝐶} = ({𝐴} ∪ {𝐶})
1514eqcomi 2830 . . . . 5 ({𝐴} ∪ {𝐶}) = {𝐴, 𝐶}
1615a1i 11 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐴} ∪ {𝐶}) = {𝐴, 𝐶})
17 df-pr 4556 . . . . . 6 {𝐵, 𝐷} = ({𝐵} ∪ {𝐷})
1817eqcomi 2830 . . . . 5 ({𝐵} ∪ {𝐷}) = {𝐵, 𝐷}
1918a1i 11 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐵} ∪ {𝐷}) = {𝐵, 𝐷})
2013, 16, 19f1oeq123d 6596 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}):({𝐴} ∪ {𝐶})–1-1-onto→({𝐵} ∪ {𝐷}) ↔ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))
2110, 20mpbid 234 . 2 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷})
2221ex 415 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  cun 3922  cin 3923  c0 4279  {csn 4553  {cpr 4555  cop 4559  1-1-ontowf1o 6340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pr 5316
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-sn 4554  df-pr 4556  df-op 4560  df-br 5053  df-opab 5115  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348
This theorem is referenced by:  f1prex  7026  s2f1o  14263  f1oun2prg  14264  symg2bas  18504  s2f1  30607  poimirlem9  34935  poimirlem15  34941
  Copyright terms: Public domain W3C validator