MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oprg Structured version   Visualization version   GIF version

Theorem f1oprg 6761
Description: An unordered pair of ordered pairs with different elements is a one-to-one onto function, analogous to f1oprswap 6760. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
f1oprg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))

Proof of Theorem f1oprg
StepHypRef Expression
1 f1osng 6757 . . . . 5 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
21ad2antrr 723 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
3 f1osng 6757 . . . . 5 ((𝐶𝑋𝐷𝑌) → {⟨𝐶, 𝐷⟩}:{𝐶}–1-1-onto→{𝐷})
43ad2antlr 724 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → {⟨𝐶, 𝐷⟩}:{𝐶}–1-1-onto→{𝐷})
5 disjsn2 4648 . . . . 5 (𝐴𝐶 → ({𝐴} ∩ {𝐶}) = ∅)
65ad2antrl 725 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐴} ∩ {𝐶}) = ∅)
7 disjsn2 4648 . . . . 5 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
87ad2antll 726 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐵} ∩ {𝐷}) = ∅)
9 f1oun 6735 . . . 4 ((({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} ∧ {⟨𝐶, 𝐷⟩}:{𝐶}–1-1-onto→{𝐷}) ∧ (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}):({𝐴} ∪ {𝐶})–1-1-onto→({𝐵} ∪ {𝐷}))
102, 4, 6, 8, 9syl22anc 836 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}):({𝐴} ∪ {𝐶})–1-1-onto→({𝐵} ∪ {𝐷}))
11 df-pr 4564 . . . . . 6 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
1211eqcomi 2747 . . . . 5 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
1312a1i 11 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
14 df-pr 4564 . . . . . 6 {𝐴, 𝐶} = ({𝐴} ∪ {𝐶})
1514eqcomi 2747 . . . . 5 ({𝐴} ∪ {𝐶}) = {𝐴, 𝐶}
1615a1i 11 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐴} ∪ {𝐶}) = {𝐴, 𝐶})
17 df-pr 4564 . . . . . 6 {𝐵, 𝐷} = ({𝐵} ∪ {𝐷})
1817eqcomi 2747 . . . . 5 ({𝐵} ∪ {𝐷}) = {𝐵, 𝐷}
1918a1i 11 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐵} ∪ {𝐷}) = {𝐵, 𝐷})
2013, 16, 19f1oeq123d 6710 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}):({𝐴} ∪ {𝐶})–1-1-onto→({𝐵} ∪ {𝐷}) ↔ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))
2110, 20mpbid 231 . 2 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷})
2221ex 413 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cun 3885  cin 3886  c0 4256  {csn 4561  {cpr 4563  cop 4567  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440
This theorem is referenced by:  f1prex  7156  s2f1o  14629  f1oun2prg  14630  symg2bas  19000  s2f1  31219  poimirlem9  35786  poimirlem15  35792
  Copyright terms: Public domain W3C validator