MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem6 Structured version   Visualization version   GIF version

Theorem vdwlem6 16957
Description: Lemma for vdw 16965. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
vdwlem6.b (𝜑𝐵 ∈ ℕ)
vdwlem6.e (𝜑𝐸:(1...𝑀)⟶ℕ)
vdwlem6.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
vdwlem6.j 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
vdwlem6.r (𝜑 → (♯‘ran 𝐽) = 𝑀)
vdwlem6.t 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
vdwlem6.p 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
Assertion
Ref Expression
vdwlem6 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑖,𝑗,𝑥,𝑦,𝐺   𝑖,𝐾,𝑗,𝑥,𝑦   𝑖,𝐽,𝑗,𝑥   𝑃,𝑖,𝑥   𝜑,𝑖,𝑗,𝑥,𝑦   𝑅,𝑖,𝑥,𝑦   𝐵,𝑖,𝑗,𝑥,𝑦   𝑖,𝐻,𝑥,𝑦   𝑖,𝑀,𝑗,𝑥,𝑦   𝐷,𝑗,𝑥,𝑦   𝑖,𝐸,𝑗,𝑥,𝑦   𝑖,𝑊,𝑗,𝑥,𝑦   𝑇,𝑖,𝑥   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖)   𝑃(𝑦,𝑗)   𝑅(𝑗)   𝑇(𝑦,𝑗)   𝐹(𝑥,𝑦,𝑖,𝑗)   𝐻(𝑗)   𝐽(𝑦)   𝑉(𝑖,𝑗)

Proof of Theorem vdwlem6
Dummy variables 𝑚 𝑛 𝑧 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6871 . . . . . . 7 (𝐺‘(𝐵 + (𝐸𝑖))) ∈ V
2 vdwlem6.j . . . . . . 7 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
31, 2fnmpti 6661 . . . . . 6 𝐽 Fn (1...𝑀)
4 fvelrnb 6921 . . . . . 6 (𝐽 Fn (1...𝑀) → ((𝐺𝐵) ∈ ran 𝐽 ↔ ∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵)))
53, 4ax-mp 5 . . . . 5 ((𝐺𝐵) ∈ ran 𝐽 ↔ ∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵))
6 vdwlem4.r . . . . . . . 8 (𝜑𝑅 ∈ Fin)
76adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑅 ∈ Fin)
8 vdwlem7.k . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ‘2))
9 eluz2nn 12847 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
108, 9syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℕ)
1110adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐾 ∈ ℕ)
12 vdwlem3.w . . . . . . . 8 (𝜑𝑊 ∈ ℕ)
1312adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑊 ∈ ℕ)
14 vdwlem7.g . . . . . . . 8 (𝜑𝐺:(1...𝑊)⟶𝑅)
1514adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐺:(1...𝑊)⟶𝑅)
16 vdwlem6.b . . . . . . . 8 (𝜑𝐵 ∈ ℕ)
1716adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐵 ∈ ℕ)
18 vdwlem7.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
1918adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑀 ∈ ℕ)
20 vdwlem6.e . . . . . . . 8 (𝜑𝐸:(1...𝑀)⟶ℕ)
2120adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐸:(1...𝑀)⟶ℕ)
22 vdwlem6.s . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
2322adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
24 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑚 ∈ (1...𝑀))
25 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐽𝑚) = (𝐺𝐵))
26 fveq2 6858 . . . . . . . . . . . 12 (𝑖 = 𝑚 → (𝐸𝑖) = (𝐸𝑚))
2726oveq2d 7403 . . . . . . . . . . 11 (𝑖 = 𝑚 → (𝐵 + (𝐸𝑖)) = (𝐵 + (𝐸𝑚)))
2827fveq2d 6862 . . . . . . . . . 10 (𝑖 = 𝑚 → (𝐺‘(𝐵 + (𝐸𝑖))) = (𝐺‘(𝐵 + (𝐸𝑚))))
29 fvex 6871 . . . . . . . . . 10 (𝐺‘(𝐵 + (𝐸𝑚))) ∈ V
3028, 2, 29fvmpt 6968 . . . . . . . . 9 (𝑚 ∈ (1...𝑀) → (𝐽𝑚) = (𝐺‘(𝐵 + (𝐸𝑚))))
3124, 30syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐽𝑚) = (𝐺‘(𝐵 + (𝐸𝑚))))
3225, 31eqtr3d 2766 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐺𝐵) = (𝐺‘(𝐵 + (𝐸𝑚))))
337, 11, 13, 15, 17, 19, 21, 23, 24, 32vdwlem1 16952 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐾 + 1) MonoAP 𝐺)
3433rexlimdvaa 3135 . . . . 5 (𝜑 → (∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵) → (𝐾 + 1) MonoAP 𝐺))
355, 34biimtrid 242 . . . 4 (𝜑 → ((𝐺𝐵) ∈ ran 𝐽 → (𝐾 + 1) MonoAP 𝐺))
3635imp 406 . . 3 ((𝜑 ∧ (𝐺𝐵) ∈ ran 𝐽) → (𝐾 + 1) MonoAP 𝐺)
3736olcd 874 . 2 ((𝜑 ∧ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
38 vdwlem3.v . . . . . . 7 (𝜑𝑉 ∈ ℕ)
39 vdwlem4.h . . . . . . 7 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
40 vdwlem4.f . . . . . . 7 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
41 vdwlem7.a . . . . . . 7 (𝜑𝐴 ∈ ℕ)
42 vdwlem7.d . . . . . . 7 (𝜑𝐷 ∈ ℕ)
43 vdwlem7.s . . . . . . 7 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
44 vdwlem6.r . . . . . . 7 (𝜑 → (♯‘ran 𝐽) = 𝑀)
45 vdwlem6.t . . . . . . 7 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
46 vdwlem6.p . . . . . . 7 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
4738, 12, 6, 39, 40, 18, 14, 8, 41, 42, 43, 16, 20, 22, 2, 44, 45, 46vdwlem5 16956 . . . . . 6 (𝜑𝑇 ∈ ℕ)
4847adantr 480 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑇 ∈ ℕ)
49 0nn0 12457 . . . . . . . . . 10 0 ∈ ℕ0
5049a1i 11 . . . . . . . . 9 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 = (𝑀 + 1)) → 0 ∈ ℕ0)
51 nnuz 12836 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
5218, 51eleqtrdi 2838 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (ℤ‘1))
5352adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑀 ∈ (ℤ‘1))
54 elfzp1 13535 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘1) → (𝑗 ∈ (1...(𝑀 + 1)) ↔ (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1))))
5553, 54syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (𝑗 ∈ (1...(𝑀 + 1)) ↔ (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1))))
5655biimpa 476 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1)))
5756ord 864 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (¬ 𝑗 ∈ (1...𝑀) → 𝑗 = (𝑀 + 1)))
5857con1d 145 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (¬ 𝑗 = (𝑀 + 1) → 𝑗 ∈ (1...𝑀)))
5958imp 406 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ ¬ 𝑗 = (𝑀 + 1)) → 𝑗 ∈ (1...𝑀))
6020ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → 𝐸:(1...𝑀)⟶ℕ)
6160ffvelcdmda 7056 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 ∈ (1...𝑀)) → (𝐸𝑗) ∈ ℕ)
6261nnnn0d 12503 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 ∈ (1...𝑀)) → (𝐸𝑗) ∈ ℕ0)
6359, 62syldan 591 . . . . . . . . 9 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ ¬ 𝑗 = (𝑀 + 1)) → (𝐸𝑗) ∈ ℕ0)
6450, 63ifclda 4524 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) ∈ ℕ0)
6512, 42nnmulcld 12239 . . . . . . . . 9 (𝜑 → (𝑊 · 𝐷) ∈ ℕ)
6665ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (𝑊 · 𝐷) ∈ ℕ)
67 nn0nnaddcl 12473 . . . . . . . 8 ((if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) ∈ ℕ0 ∧ (𝑊 · 𝐷) ∈ ℕ) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) ∈ ℕ)
6864, 66, 67syl2anc 584 . . . . . . 7 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) ∈ ℕ)
6968, 46fmptd 7086 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑃:(1...(𝑀 + 1))⟶ℕ)
70 nnex 12192 . . . . . . 7 ℕ ∈ V
71 ovex 7420 . . . . . . 7 (1...(𝑀 + 1)) ∈ V
7270, 71elmap 8844 . . . . . 6 (𝑃 ∈ (ℕ ↑m (1...(𝑀 + 1))) ↔ 𝑃:(1...(𝑀 + 1))⟶ℕ)
7369, 72sylibr 234 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑃 ∈ (ℕ ↑m (1...(𝑀 + 1))))
74 elfzp1 13535 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘1) → (𝑖 ∈ (1...(𝑀 + 1)) ↔ (𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1))))
7552, 74syl 17 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...(𝑀 + 1)) ↔ (𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1))))
7616adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ ℕ)
7776nncnd 12202 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ ℂ)
7877adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ ℂ)
7920ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℕ)
8079nncnd 12202 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℂ)
8180adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐸𝑖) ∈ ℂ)
8278, 81addcld 11193 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝐸𝑖)) ∈ ℂ)
83 nnm1nn0 12483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
8441, 83syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 − 1) ∈ ℕ0)
85 nn0nnaddcl 12473 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝐴 − 1) + 𝑉) ∈ ℕ)
8684, 38, 85syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℕ)
8712, 86nnmulcld 12239 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
8887nncnd 12202 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
8988ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
90 elfznn0 13581 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
9190adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
9291nn0cnd 12505 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
9392adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
9493, 81mulcld 11194 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝐸𝑖)) ∈ ℂ)
9565nnnn0d 12503 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑊 · 𝐷) ∈ ℕ0)
9695adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · 𝐷) ∈ ℕ0)
9791, 96nn0mulcld 12508 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℕ0)
9897nn0cnd 12505 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℂ)
9998adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℂ)
10082, 89, 94, 99add4d 11403 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
10165nncnd 12202 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑊 · 𝐷) ∈ ℂ)
102101ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · 𝐷) ∈ ℂ)
10393, 81, 102adddid 11198 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))) = ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷))))
104103oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷)))))
10512nncnd 12202 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑊 ∈ ℂ)
106105adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℂ)
10786nncnd 12202 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℂ)
108107adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 − 1) + 𝑉) ∈ ℂ)
10942nncnd 12202 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐷 ∈ ℂ)
110109adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐷 ∈ ℂ)
11192, 110mulcld 11194 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ)
112106, 108, 111adddid 11198 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷))) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑊 · (𝑚 · 𝐷))))
11341nncnd 12202 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐴 ∈ ℂ)
114113adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈ ℂ)
115 1cnd 11169 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈ ℂ)
116114, 111, 115addsubd 11554 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) − 1) = ((𝐴 − 1) + (𝑚 · 𝐷)))
117116oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉) = (((𝐴 − 1) + (𝑚 · 𝐷)) + 𝑉))
11884nn0cnd 12505 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 − 1) ∈ ℂ)
119118adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 − 1) ∈ ℂ)
12038nncnd 12202 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑉 ∈ ℂ)
121120adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℂ)
122119, 111, 121add32d 11402 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 − 1) + (𝑚 · 𝐷)) + 𝑉) = (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷)))
123117, 122eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉) = (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷)))
124123oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = (𝑊 · (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷))))
12592, 106, 110mul12d 11383 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) = (𝑊 · (𝑚 · 𝐷)))
126125oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑊 · (𝑚 · 𝐷))))
127112, 124, 1263eqtr4d 2774 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))))
128127adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))))
129128oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
130100, 104, 1293eqtr4d 2774 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
13138ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℕ)
13212ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℕ)
13343adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
134 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))
135 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑚 → (𝑛 · 𝐷) = (𝑚 · 𝐷))
136135oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝑚 · 𝐷)))
137136rspceeqv 3611 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
138134, 137mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
13910nnnn0d 12503 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐾 ∈ ℕ0)
140 vdwapval 16944 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
141139, 41, 42, 140syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
142141biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
143138, 142sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
144133, 143sseldd 3947 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}))
14538, 12, 6, 39, 40vdwlem4 16955 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
146145ffnd 6689 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 Fn (1...𝑉))
147 fniniseg 7032 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 Fn (1...𝑉) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)))
148146, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)))
149148biimpa 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺})) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺))
150144, 149syldan 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺))
151150simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉))
152151adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉))
15322r19.21bi 3229 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
154153adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
155 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))
156 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑛 · (𝐸𝑖)) = (𝑚 · (𝐸𝑖)))
157156oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))))
158157rspceeqv 3611 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) → ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))))
159155, 158mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))))
16010adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
161160nnnn0d 12503 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ0)
16276, 79nnaddcld 12238 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ ℕ)
163 vdwapval 16944 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0 ∧ (𝐵 + (𝐸𝑖)) ∈ ℕ ∧ (𝐸𝑖) ∈ ℕ) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))))
164161, 162, 79, 163syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))))
165164biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (1...𝑀)) ∧ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
166159, 165sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
167154, 166sseldd 3947 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
16814ffnd 6689 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 Fn (1...𝑊))
169168adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐺 Fn (1...𝑊))
170 fniniseg 7032 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 Fn (1...𝑊) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
171169, 170syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
172171biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))})) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
173167, 172syldan 591 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
174173simpld 494 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊))
175131, 132, 152, 174vdwlem3 16954 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
176130, 175eqeltrd 2828 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))))
177 fvoveq1 7410 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) → (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
178 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
179 fvex 6871 . . . . . . . . . . . . . . . . . . . 20 (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) ∈ V
180177, 178, 179fvmpt 6968 . . . . . . . . . . . . . . . . . . 19 (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
181174, 180syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
182173simprd 495 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))
183150simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)
184 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑥 − 1) = ((𝐴 + (𝑚 · 𝐷)) − 1))
185184oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → ((𝑥 − 1) + 𝑉) = (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))
186185oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))
187186oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
188187fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
189188mpteq2dv 5201 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
190 ovex 7420 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1...𝑊) ∈ V
191190mptex 7197 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))) ∈ V
192189, 40, 191fvmpt 6968 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
193151, 192syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
194183, 193eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
195194adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
196195fveq1d 6860 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))))
197182, 196eqtr3d 2766 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))))
198130fveq2d 6862 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
199181, 197, 1983eqtr4rd 2775 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖))))
200176, 199jca 511 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
201 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉)))))
202 fveqeq2 6867 . . . . . . . . . . . . . . . . 17 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → ((𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))) ↔ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
203201, 202anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → ((𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖)))) ↔ ((((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
204200, 203syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
205204rexlimdva 3134 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
20687adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
207162, 206nnaddcld 12238 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
20865adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · 𝐷) ∈ ℕ)
20979, 208nnaddcld 12238 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑊 · 𝐷)) ∈ ℕ)
210 vdwapval 16944 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0 ∧ ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ ∧ ((𝐸𝑖) + (𝑊 · 𝐷)) ∈ ℕ) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))))
211161, 207, 209, 210syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))))
21239ffnd 6689 . . . . . . . . . . . . . . . 16 (𝜑𝐻 Fn (1...(𝑊 · (2 · 𝑉))))
213212adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐻 Fn (1...(𝑊 · (2 · 𝑉))))
214 fniniseg 7032 . . . . . . . . . . . . . . 15 (𝐻 Fn (1...(𝑊 · (2 · 𝑉))) → (𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
215213, 214syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
216205, 211, 2153imtr4d 294 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) → 𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))})))
217216ssrdv 3952 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ⊆ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
218 ssun1 4141 . . . . . . . . . . . . . . . . . . 19 (1...𝑀) ⊆ ((1...𝑀) ∪ {(𝑀 + 1)})
219 fzsuc 13532 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (ℤ‘1) → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}))
22052, 219syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}))
221218, 220sseqtrrid 3990 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...𝑀) ⊆ (1...(𝑀 + 1)))
222221sselda 3946 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...(𝑀 + 1)))
223 eqeq1 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝑗 = (𝑀 + 1) ↔ 𝑖 = (𝑀 + 1)))
224 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝐸𝑗) = (𝐸𝑖))
225223, 224ifbieq2d 4515 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) = if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)))
226225oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
227 ovex 7420 . . . . . . . . . . . . . . . . . 18 (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) ∈ V
228226, 46, 227fvmpt 6968 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(𝑀 + 1)) → (𝑃𝑖) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
229222, 228syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃𝑖) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
23018nnred 12201 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑀 ∈ ℝ)
231230ltp1d 12113 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 < (𝑀 + 1))
232 peano2re 11347 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
233230, 232syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 + 1) ∈ ℝ)
234230, 233ltnled 11321 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀))
235231, 234mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ (𝑀 + 1) ≤ 𝑀)
236 breq1 5110 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑀 + 1) → (𝑖𝑀 ↔ (𝑀 + 1) ≤ 𝑀))
237236notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑀 + 1) → (¬ 𝑖𝑀 ↔ ¬ (𝑀 + 1) ≤ 𝑀))
238235, 237syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑖 = (𝑀 + 1) → ¬ 𝑖𝑀))
239238con2d 134 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑖𝑀 → ¬ 𝑖 = (𝑀 + 1)))
240 elfzle2 13489 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
241239, 240impel 505 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ¬ 𝑖 = (𝑀 + 1))
242 iffalse 4497 . . . . . . . . . . . . . . . . . 18 𝑖 = (𝑀 + 1) → if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) = (𝐸𝑖))
243242oveq1d 7402 . . . . . . . . . . . . . . . . 17 𝑖 = (𝑀 + 1) → (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) = ((𝐸𝑖) + (𝑊 · 𝐷)))
244241, 243syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) = ((𝐸𝑖) + (𝑊 · 𝐷)))
245229, 244eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃𝑖) = ((𝐸𝑖) + (𝑊 · 𝐷)))
246245oveq2d 7403 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + (𝑃𝑖)) = (𝑇 + ((𝐸𝑖) + (𝑊 · 𝐷))))
24747nncnd 12202 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ ℂ)
248247adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑇 ∈ ℂ)
249101adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · 𝐷) ∈ ℂ)
250248, 80, 249add12d 11401 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + ((𝐸𝑖) + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))))
25145oveq1i 7397 . . . . . . . . . . . . . . . . . 18 (𝑇 + (𝑊 · 𝐷)) = ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷))
25216nncnd 12202 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ ℂ)
253120, 109subcld 11533 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑉𝐷) ∈ ℂ)
254113, 253addcld 11193 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + (𝑉𝐷)) ∈ ℂ)
255 ax-1cn 11126 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
256 subcl 11420 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 + (𝑉𝐷)) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℂ)
257254, 255, 256sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℂ)
258105, 257mulcld 11194 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℂ)
259252, 258, 101addassd 11196 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷)) = (𝐵 + ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷))))
260105, 257, 109adddid 11198 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · (((𝐴 + (𝑉𝐷)) − 1) + 𝐷)) = ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷)))
261113, 253, 109addassd 11196 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐴 + (𝑉𝐷)) + 𝐷) = (𝐴 + ((𝑉𝐷) + 𝐷)))
262120, 109npcand 11537 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝑉𝐷) + 𝐷) = 𝑉)
263262oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐴 + ((𝑉𝐷) + 𝐷)) = (𝐴 + 𝑉))
264261, 263eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴 + (𝑉𝐷)) + 𝐷) = (𝐴 + 𝑉))
265264oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + (𝑉𝐷)) + 𝐷) − 1) = ((𝐴 + 𝑉) − 1))
266 1cnd 11169 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℂ)
267254, 109, 266addsubd 11554 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + (𝑉𝐷)) + 𝐷) − 1) = (((𝐴 + (𝑉𝐷)) − 1) + 𝐷))
268113, 120, 266addsubd 11554 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + 𝑉) − 1) = ((𝐴 − 1) + 𝑉))
269265, 267, 2683eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐴 + (𝑉𝐷)) − 1) + 𝐷) = ((𝐴 − 1) + 𝑉))
270269oveq2d 7403 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · (((𝐴 + (𝑉𝐷)) − 1) + 𝐷)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
271260, 270eqtr3d 2766 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
272271oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵 + ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷))) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
273259, 272eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷)) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
274251, 273eqtrid 2776 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑇 + (𝑊 · 𝐷)) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
275274oveq2d 7403 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
276275adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
27788adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
27880, 77, 277addassd 11196 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐸𝑖) + 𝐵) + (𝑊 · ((𝐴 − 1) + 𝑉))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
27980, 77addcomd 11376 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + 𝐵) = (𝐵 + (𝐸𝑖)))
280279oveq1d 7402 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐸𝑖) + 𝐵) + (𝑊 · ((𝐴 − 1) + 𝑉))) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
281276, 278, 2803eqtr2d 2770 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
282246, 250, 2813eqtrd 2768 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + (𝑃𝑖)) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
283282, 245oveq12d 7405 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))))
284 cnvimass 6053 . . . . . . . . . . . . . . . . . . 19 (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ dom 𝐺
285284, 14fssdm 6707 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ (1...𝑊))
286285adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ (1...𝑊))
287 vdwapid1 16946 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ ∧ (𝐵 + (𝐸𝑖)) ∈ ℕ ∧ (𝐸𝑖) ∈ ℕ) → (𝐵 + (𝐸𝑖)) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
288160, 162, 79, 287syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
289153, 288sseldd 3947 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
290286, 289sseldd 3947 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (1...𝑊))
291 fvoveq1 7410 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐵 + (𝐸𝑖)) → (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
292 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
293 fvex 6871 . . . . . . . . . . . . . . . . 17 (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))) ∈ V
294291, 292, 293fvmpt 6968 . . . . . . . . . . . . . . . 16 ((𝐵 + (𝐸𝑖)) ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
295290, 294syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
296 vdwapid1 16946 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
29710, 41, 42, 296syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
29843, 297sseldd 3947 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ (𝐹 “ {𝐺}))
299 fniniseg 7032 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn (1...𝑉) → (𝐴 ∈ (𝐹 “ {𝐺}) ↔ (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺)))
300146, 299syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 ∈ (𝐹 “ {𝐺}) ↔ (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺)))
301298, 300mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺))
302301simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴) = 𝐺)
303301simpld 494 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ (1...𝑉))
304 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1))
305304oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐴 → ((𝑥 − 1) + 𝑉) = ((𝐴 − 1) + 𝑉))
306305oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝐴 → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
307306oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝐴 → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))
308307fveq2d 6862 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝐴 → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
309308mpteq2dv 5201 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝐴 → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
310190mptex 7197 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))) ∈ V
311309, 40, 310fvmpt 6968 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ (1...𝑉) → (𝐹𝐴) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
312303, 311syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
313302, 312eqtr3d 2766 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
314313fveq1d 6860 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))))
315314adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))))
316282fveq2d 6862 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
317295, 315, 3163eqtr4rd 2775 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐺‘(𝐵 + (𝐸𝑖))))
318317sneqd 4601 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → {(𝐻‘(𝑇 + (𝑃𝑖)))} = {(𝐺‘(𝐵 + (𝐸𝑖)))})
319318imaeq2d 6031 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) = (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
320217, 283, 3193sstr4d 4002 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
321320ex 412 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (1...𝑀) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
322252adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ ℂ)
32388adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
324322, 323, 98addassd 11196 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) = (𝐵 + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
325127oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) = (𝐵 + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
326324, 325eqtr4d 2767 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) = (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
32738adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℕ)
32812adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℕ)
329 eluzfz1 13492 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ (ℤ‘1) → 1 ∈ (1...𝑀))
33052, 329syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ (1...𝑀))
331330ne0d 4305 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1...𝑀) ≠ ∅)
332 elfzuz3 13482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 + (𝐸𝑖)) ∈ (1...𝑊) → 𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))))
333290, 332syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))))
33416nnzd 12556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐵 ∈ ℤ)
335 uzid 12808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ𝐵))
336334, 335syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ (ℤ𝐵))
337336adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ (ℤ𝐵))
33879nnnn0d 12503 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℕ0)
339 uzaddcl 12863 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ (ℤ𝐵) ∧ (𝐸𝑖) ∈ ℕ0) → (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵))
340337, 338, 339syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵))
341 uztrn 12811 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))) ∧ (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵)) → 𝑊 ∈ (ℤ𝐵))
342333, 340, 341syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑊 ∈ (ℤ𝐵))
343 eluzle 12806 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑊 ∈ (ℤ𝐵) → 𝐵𝑊)
344342, 343syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵𝑊)
345344ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑖 ∈ (1...𝑀)𝐵𝑊)
346 r19.2z 4458 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑀) ≠ ∅ ∧ ∀𝑖 ∈ (1...𝑀)𝐵𝑊) → ∃𝑖 ∈ (1...𝑀)𝐵𝑊)
347331, 345, 346syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∃𝑖 ∈ (1...𝑀)𝐵𝑊)
348 idd 24 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (1...𝑀) → (𝐵𝑊𝐵𝑊))
349348rexlimiv 3127 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑖 ∈ (1...𝑀)𝐵𝑊𝐵𝑊)
350347, 349syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵𝑊)
35112nnzd 12556 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑊 ∈ ℤ)
352 fznn 13553 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ ℤ → (𝐵 ∈ (1...𝑊) ↔ (𝐵 ∈ ℕ ∧ 𝐵𝑊)))
353351, 352syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 ∈ (1...𝑊) ↔ (𝐵 ∈ ℕ ∧ 𝐵𝑊)))
35416, 350, 353mpbir2and 713 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ (1...𝑊))
355354adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ (1...𝑊))
356327, 328, 151, 355vdwlem3 16954 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
357326, 356eqeltrd 2828 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))))
358 fvoveq1 7410 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
359 fvex 6871 . . . . . . . . . . . . . . . . . . . 20 (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) ∈ V
360358, 178, 359fvmpt 6968 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
361355, 360syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
362194fveq1d 6860 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐺𝐵) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵))
363326fveq2d 6862 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
364361, 362, 3633eqtr4rd 2775 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵))
365357, 364jca 511 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵)))
366 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ↔ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉)))))
367 fveqeq2 6867 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → ((𝐻𝑧) = (𝐺𝐵) ↔ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵)))
368366, 367anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → ((𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵)) ↔ (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵))))
369365, 368syl5ibrcom 247 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
370369rexlimdva 3134 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
37116, 87nnaddcld 12238 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
372 vdwapval 16944 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0 ∧ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ ∧ (𝑊 · 𝐷) ∈ ℕ) → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))))
373139, 371, 65, 372syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))))
374 fniniseg 7032 . . . . . . . . . . . . . . 15 (𝐻 Fn (1...(𝑊 · (2 · 𝑉))) → (𝑧 ∈ (𝐻 “ {(𝐺𝐵)}) ↔ (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
375212, 374syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ (𝐻 “ {(𝐺𝐵)}) ↔ (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
376370, 373, 3753imtr4d 294 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) → 𝑧 ∈ (𝐻 “ {(𝐺𝐵)})))
377376ssrdv 3952 . . . . . . . . . . . 12 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ⊆ (𝐻 “ {(𝐺𝐵)}))
37818peano2nnd 12203 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + 1) ∈ ℕ)
379378, 51eleqtrdi 2838 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
380 eluzfz2 13493 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) ∈ (ℤ‘1) → (𝑀 + 1) ∈ (1...(𝑀 + 1)))
381 iftrue 4494 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑀 + 1) → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) = 0)
382381oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑀 + 1) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) = (0 + (𝑊 · 𝐷)))
383 ovex 7420 . . . . . . . . . . . . . . . . . 18 (0 + (𝑊 · 𝐷)) ∈ V
384382, 46, 383fvmpt 6968 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) ∈ (1...(𝑀 + 1)) → (𝑃‘(𝑀 + 1)) = (0 + (𝑊 · 𝐷)))
385379, 380, 3843syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃‘(𝑀 + 1)) = (0 + (𝑊 · 𝐷)))
386101addlidd 11375 . . . . . . . . . . . . . . . 16 (𝜑 → (0 + (𝑊 · 𝐷)) = (𝑊 · 𝐷))
387385, 386eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃‘(𝑀 + 1)) = (𝑊 · 𝐷))
388387oveq2d 7403 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 + (𝑃‘(𝑀 + 1))) = (𝑇 + (𝑊 · 𝐷)))
389388, 274eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (𝑇 + (𝑃‘(𝑀 + 1))) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
390389, 387oveq12d 7405 . . . . . . . . . . . 12 (𝜑 → ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)))
391 fvoveq1 7410 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
392 fvex 6871 . . . . . . . . . . . . . . . . 17 (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))) ∈ V
393391, 292, 392fvmpt 6968 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
394354, 393syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
395313fveq1d 6860 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝐵) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵))
396389fveq2d 6862 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
397394, 395, 3963eqtr4rd 2775 . . . . . . . . . . . . . 14 (𝜑 → (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) = (𝐺𝐵))
398397sneqd 4601 . . . . . . . . . . . . 13 (𝜑 → {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))} = {(𝐺𝐵)})
399398imaeq2d 6031 . . . . . . . . . . . 12 (𝜑 → (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}) = (𝐻 “ {(𝐺𝐵)}))
400377, 390, 3993sstr4d 4002 . . . . . . . . . . 11 (𝜑 → ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}))
401 fveq2 6858 . . . . . . . . . . . . . 14 (𝑖 = (𝑀 + 1) → (𝑃𝑖) = (𝑃‘(𝑀 + 1)))
402401oveq2d 7403 . . . . . . . . . . . . 13 (𝑖 = (𝑀 + 1) → (𝑇 + (𝑃𝑖)) = (𝑇 + (𝑃‘(𝑀 + 1))))
403402, 401oveq12d 7405 . . . . . . . . . . . 12 (𝑖 = (𝑀 + 1) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) = ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))))
404402fveq2d 6862 . . . . . . . . . . . . . 14 (𝑖 = (𝑀 + 1) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))))
405404sneqd 4601 . . . . . . . . . . . . 13 (𝑖 = (𝑀 + 1) → {(𝐻‘(𝑇 + (𝑃𝑖)))} = {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))})
406405imaeq2d 6031 . . . . . . . . . . . 12 (𝑖 = (𝑀 + 1) → (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}))
407403, 406sseq12d 3980 . . . . . . . . . . 11 (𝑖 = (𝑀 + 1) → (((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ↔ ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))})))
408400, 407syl5ibrcom 247 . . . . . . . . . 10 (𝜑 → (𝑖 = (𝑀 + 1) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
409321, 408jaod 859 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
41075, 409sylbid 240 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...(𝑀 + 1)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
411410ralrimiv 3124 . . . . . . 7 (𝜑 → ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
412411adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
413220rexeqdv 3300 . . . . . . . . . . . 12 (𝜑 → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ ∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))))
414 rexun 4159 . . . . . . . . . . . . 13 (∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ∨ ∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))))
415317eqeq2d 2740 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))))
416415rexbidva 3155 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))))
417 ovex 7420 . . . . . . . . . . . . . . . 16 (𝑀 + 1) ∈ V
418404eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑀 + 1) → (𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))))
419417, 418rexsn 4646 . . . . . . . . . . . . . . 15 (∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))))
420397eqeq2d 2740 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) ↔ 𝑥 = (𝐺𝐵)))
421419, 420bitrid 283 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐺𝐵)))
422416, 421orbi12d 918 . . . . . . . . . . . . 13 (𝜑 → ((∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ∨ ∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
423414, 422bitrid 283 . . . . . . . . . . . 12 (𝜑 → (∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
424413, 423bitrd 279 . . . . . . . . . . 11 (𝜑 → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
425424adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
426425abbidv 2795 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → {𝑥 ∣ ∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))} = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))})
427 eqid 2729 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))
428427rnmpt 5921 . . . . . . . . 9 ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = {𝑥 ∣ ∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))}
4292rnmpt 5921 . . . . . . . . . . 11 ran 𝐽 = {𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))}
430 df-sn 4590 . . . . . . . . . . 11 {(𝐺𝐵)} = {𝑥𝑥 = (𝐺𝐵)}
431429, 430uneq12i 4129 . . . . . . . . . 10 (ran 𝐽 ∪ {(𝐺𝐵)}) = ({𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))} ∪ {𝑥𝑥 = (𝐺𝐵)})
432 unab 4271 . . . . . . . . . 10 ({𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))} ∪ {𝑥𝑥 = (𝐺𝐵)}) = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))}
433431, 432eqtri 2752 . . . . . . . . 9 (ran 𝐽 ∪ {(𝐺𝐵)}) = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))}
434426, 428, 4333eqtr4g 2789 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = (ran 𝐽 ∪ {(𝐺𝐵)}))
435434fveq2d 6862 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})))
436 fzfi 13937 . . . . . . . . . 10 (1...𝑀) ∈ Fin
437 dffn4 6778 . . . . . . . . . . 11 (𝐽 Fn (1...𝑀) ↔ 𝐽:(1...𝑀)–onto→ran 𝐽)
4383, 437mpbi 230 . . . . . . . . . 10 𝐽:(1...𝑀)–onto→ran 𝐽
439 fofi 9262 . . . . . . . . . 10 (((1...𝑀) ∈ Fin ∧ 𝐽:(1...𝑀)–onto→ran 𝐽) → ran 𝐽 ∈ Fin)
440436, 438, 439mp2an 692 . . . . . . . . 9 ran 𝐽 ∈ Fin
441440a1i 11 . . . . . . . 8 (𝜑 → ran 𝐽 ∈ Fin)
442 fvex 6871 . . . . . . . . 9 (𝐺𝐵) ∈ V
443 hashunsng 14357 . . . . . . . . 9 ((𝐺𝐵) ∈ V → ((ran 𝐽 ∈ Fin ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((♯‘ran 𝐽) + 1)))
444442, 443ax-mp 5 . . . . . . . 8 ((ran 𝐽 ∈ Fin ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((♯‘ran 𝐽) + 1))
445441, 444sylan 580 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((♯‘ran 𝐽) + 1))
44644adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘ran 𝐽) = 𝑀)
447446oveq1d 7402 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ((♯‘ran 𝐽) + 1) = (𝑀 + 1))
448435, 445, 4473eqtrd 2768 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))
449412, 448jca 511 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1)))
450 oveq1 7394 . . . . . . . . . 10 (𝑎 = 𝑇 → (𝑎 + (𝑑𝑖)) = (𝑇 + (𝑑𝑖)))
451450oveq1d 7402 . . . . . . . . 9 (𝑎 = 𝑇 → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
452 fvoveq1 7410 . . . . . . . . . . 11 (𝑎 = 𝑇 → (𝐻‘(𝑎 + (𝑑𝑖))) = (𝐻‘(𝑇 + (𝑑𝑖))))
453452sneqd 4601 . . . . . . . . . 10 (𝑎 = 𝑇 → {(𝐻‘(𝑎 + (𝑑𝑖)))} = {(𝐻‘(𝑇 + (𝑑𝑖)))})
454453imaeq2d 6031 . . . . . . . . 9 (𝑎 = 𝑇 → (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}))
455451, 454sseq12d 3980 . . . . . . . 8 (𝑎 = 𝑇 → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ↔ ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))})))
456455ralbidv 3156 . . . . . . 7 (𝑎 = 𝑇 → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))})))
457452mpteq2dv 5201 . . . . . . . . 9 (𝑎 = 𝑇 → (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))))
458457rneqd 5902 . . . . . . . 8 (𝑎 = 𝑇 → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖)))) = ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))))
459458fveqeq2d 6866 . . . . . . 7 (𝑎 = 𝑇 → ((♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1) ↔ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1)))
460456, 459anbi12d 632 . . . . . 6 (𝑎 = 𝑇 → ((∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1))))
461 fveq1 6857 . . . . . . . . . . 11 (𝑑 = 𝑃 → (𝑑𝑖) = (𝑃𝑖))
462461oveq2d 7403 . . . . . . . . . 10 (𝑑 = 𝑃 → (𝑇 + (𝑑𝑖)) = (𝑇 + (𝑃𝑖)))
463462, 461oveq12d 7405 . . . . . . . . 9 (𝑑 = 𝑃 → ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)))
464462fveq2d 6862 . . . . . . . . . . 11 (𝑑 = 𝑃 → (𝐻‘(𝑇 + (𝑑𝑖))) = (𝐻‘(𝑇 + (𝑃𝑖))))
465464sneqd 4601 . . . . . . . . . 10 (𝑑 = 𝑃 → {(𝐻‘(𝑇 + (𝑑𝑖)))} = {(𝐻‘(𝑇 + (𝑃𝑖)))})
466465imaeq2d 6031 . . . . . . . . 9 (𝑑 = 𝑃 → (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
467463, 466sseq12d 3980 . . . . . . . 8 (𝑑 = 𝑃 → (((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ↔ ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
468467ralbidv 3156 . . . . . . 7 (𝑑 = 𝑃 → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
469464mpteq2dv 5201 . . . . . . . . 9 (𝑑 = 𝑃 → (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))))
470469rneqd 5902 . . . . . . . 8 (𝑑 = 𝑃 → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))) = ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))))
471470fveqeq2d 6866 . . . . . . 7 (𝑑 = 𝑃 → ((♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1) ↔ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1)))
472468, 471anbi12d 632 . . . . . 6 (𝑑 = 𝑃 → ((∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))))
473460, 472rspc2ev 3601 . . . . 5 ((𝑇 ∈ ℕ ∧ 𝑃 ∈ (ℕ ↑m (1...(𝑀 + 1))) ∧ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)))
47448, 73, 449, 473syl3anc 1373 . . . 4 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)))
475 ovex 7420 . . . . 5 (1...(𝑊 · (2 · 𝑉))) ∈ V
47610adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐾 ∈ ℕ)
477476nnnn0d 12503 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐾 ∈ ℕ0)
47839adantr 480 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
47918adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑀 ∈ ℕ)
480479peano2nnd 12203 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (𝑀 + 1) ∈ ℕ)
481 eqid 2729 . . . . 5 (1...(𝑀 + 1)) = (1...(𝑀 + 1))
482475, 477, 478, 480, 481vdwpc 16951 . . . 4 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1))))
483474, 482mpbird 257 . . 3 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻)
484483orcd 873 . 2 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
48537, 484pm2.61dan 812 1 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cun 3912  wss 3914  c0 4296  ifcif 4488  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188  ccnv 5637  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  chash 14295  APcvdwa 16936   MonoAP cvdwm 16937   PolyAP cvdwp 16938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-hash 14296  df-vdwap 16939  df-vdwmc 16940  df-vdwpc 16941
This theorem is referenced by:  vdwlem7  16958
  Copyright terms: Public domain W3C validator