MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem6 Structured version   Visualization version   GIF version

Theorem vdwlem6 16322
Description: Lemma for vdw 16330. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
vdwlem6.b (𝜑𝐵 ∈ ℕ)
vdwlem6.e (𝜑𝐸:(1...𝑀)⟶ℕ)
vdwlem6.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
vdwlem6.j 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
vdwlem6.r (𝜑 → (♯‘ran 𝐽) = 𝑀)
vdwlem6.t 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
vdwlem6.p 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
Assertion
Ref Expression
vdwlem6 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑖,𝑗,𝑥,𝑦,𝐺   𝑖,𝐾,𝑗,𝑥,𝑦   𝑖,𝐽,𝑗,𝑥   𝑃,𝑖,𝑥   𝜑,𝑖,𝑗,𝑥,𝑦   𝑅,𝑖,𝑥,𝑦   𝐵,𝑖,𝑗,𝑥,𝑦   𝑖,𝐻,𝑥,𝑦   𝑖,𝑀,𝑗,𝑥,𝑦   𝐷,𝑗,𝑥,𝑦   𝑖,𝐸,𝑗,𝑥,𝑦   𝑖,𝑊,𝑗,𝑥,𝑦   𝑇,𝑖,𝑥   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖)   𝑃(𝑦,𝑗)   𝑅(𝑗)   𝑇(𝑦,𝑗)   𝐹(𝑥,𝑦,𝑖,𝑗)   𝐻(𝑗)   𝐽(𝑦)   𝑉(𝑖,𝑗)

Proof of Theorem vdwlem6
Dummy variables 𝑚 𝑛 𝑧 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6683 . . . . . . 7 (𝐺‘(𝐵 + (𝐸𝑖))) ∈ V
2 vdwlem6.j . . . . . . 7 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
31, 2fnmpti 6491 . . . . . 6 𝐽 Fn (1...𝑀)
4 fvelrnb 6726 . . . . . 6 (𝐽 Fn (1...𝑀) → ((𝐺𝐵) ∈ ran 𝐽 ↔ ∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵)))
53, 4ax-mp 5 . . . . 5 ((𝐺𝐵) ∈ ran 𝐽 ↔ ∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵))
6 vdwlem4.r . . . . . . . 8 (𝜑𝑅 ∈ Fin)
76adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑅 ∈ Fin)
8 vdwlem7.k . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ‘2))
9 eluz2nn 12285 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
108, 9syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℕ)
1110adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐾 ∈ ℕ)
12 vdwlem3.w . . . . . . . 8 (𝜑𝑊 ∈ ℕ)
1312adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑊 ∈ ℕ)
14 vdwlem7.g . . . . . . . 8 (𝜑𝐺:(1...𝑊)⟶𝑅)
1514adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐺:(1...𝑊)⟶𝑅)
16 vdwlem6.b . . . . . . . 8 (𝜑𝐵 ∈ ℕ)
1716adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐵 ∈ ℕ)
18 vdwlem7.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
1918adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑀 ∈ ℕ)
20 vdwlem6.e . . . . . . . 8 (𝜑𝐸:(1...𝑀)⟶ℕ)
2120adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐸:(1...𝑀)⟶ℕ)
22 vdwlem6.s . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
2322adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
24 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑚 ∈ (1...𝑀))
25 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐽𝑚) = (𝐺𝐵))
26 fveq2 6670 . . . . . . . . . . . 12 (𝑖 = 𝑚 → (𝐸𝑖) = (𝐸𝑚))
2726oveq2d 7172 . . . . . . . . . . 11 (𝑖 = 𝑚 → (𝐵 + (𝐸𝑖)) = (𝐵 + (𝐸𝑚)))
2827fveq2d 6674 . . . . . . . . . 10 (𝑖 = 𝑚 → (𝐺‘(𝐵 + (𝐸𝑖))) = (𝐺‘(𝐵 + (𝐸𝑚))))
29 fvex 6683 . . . . . . . . . 10 (𝐺‘(𝐵 + (𝐸𝑚))) ∈ V
3028, 2, 29fvmpt 6768 . . . . . . . . 9 (𝑚 ∈ (1...𝑀) → (𝐽𝑚) = (𝐺‘(𝐵 + (𝐸𝑚))))
3124, 30syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐽𝑚) = (𝐺‘(𝐵 + (𝐸𝑚))))
3225, 31eqtr3d 2858 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐺𝐵) = (𝐺‘(𝐵 + (𝐸𝑚))))
337, 11, 13, 15, 17, 19, 21, 23, 24, 32vdwlem1 16317 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐾 + 1) MonoAP 𝐺)
3433rexlimdvaa 3285 . . . . 5 (𝜑 → (∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵) → (𝐾 + 1) MonoAP 𝐺))
355, 34syl5bi 244 . . . 4 (𝜑 → ((𝐺𝐵) ∈ ran 𝐽 → (𝐾 + 1) MonoAP 𝐺))
3635imp 409 . . 3 ((𝜑 ∧ (𝐺𝐵) ∈ ran 𝐽) → (𝐾 + 1) MonoAP 𝐺)
3736olcd 870 . 2 ((𝜑 ∧ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
38 vdwlem3.v . . . . . . 7 (𝜑𝑉 ∈ ℕ)
39 vdwlem4.h . . . . . . 7 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
40 vdwlem4.f . . . . . . 7 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
41 vdwlem7.a . . . . . . 7 (𝜑𝐴 ∈ ℕ)
42 vdwlem7.d . . . . . . 7 (𝜑𝐷 ∈ ℕ)
43 vdwlem7.s . . . . . . 7 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
44 vdwlem6.r . . . . . . 7 (𝜑 → (♯‘ran 𝐽) = 𝑀)
45 vdwlem6.t . . . . . . 7 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
46 vdwlem6.p . . . . . . 7 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
4738, 12, 6, 39, 40, 18, 14, 8, 41, 42, 43, 16, 20, 22, 2, 44, 45, 46vdwlem5 16321 . . . . . 6 (𝜑𝑇 ∈ ℕ)
4847adantr 483 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑇 ∈ ℕ)
49 0nn0 11913 . . . . . . . . . 10 0 ∈ ℕ0
5049a1i 11 . . . . . . . . 9 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 = (𝑀 + 1)) → 0 ∈ ℕ0)
51 nnuz 12282 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
5218, 51eleqtrdi 2923 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (ℤ‘1))
5352adantr 483 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑀 ∈ (ℤ‘1))
54 elfzp1 12958 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘1) → (𝑗 ∈ (1...(𝑀 + 1)) ↔ (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1))))
5553, 54syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (𝑗 ∈ (1...(𝑀 + 1)) ↔ (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1))))
5655biimpa 479 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1)))
5756ord 860 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (¬ 𝑗 ∈ (1...𝑀) → 𝑗 = (𝑀 + 1)))
5857con1d 147 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (¬ 𝑗 = (𝑀 + 1) → 𝑗 ∈ (1...𝑀)))
5958imp 409 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ ¬ 𝑗 = (𝑀 + 1)) → 𝑗 ∈ (1...𝑀))
6020ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → 𝐸:(1...𝑀)⟶ℕ)
6160ffvelrnda 6851 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 ∈ (1...𝑀)) → (𝐸𝑗) ∈ ℕ)
6261nnnn0d 11956 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 ∈ (1...𝑀)) → (𝐸𝑗) ∈ ℕ0)
6359, 62syldan 593 . . . . . . . . 9 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ ¬ 𝑗 = (𝑀 + 1)) → (𝐸𝑗) ∈ ℕ0)
6450, 63ifclda 4501 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) ∈ ℕ0)
6512, 42nnmulcld 11691 . . . . . . . . 9 (𝜑 → (𝑊 · 𝐷) ∈ ℕ)
6665ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (𝑊 · 𝐷) ∈ ℕ)
67 nn0nnaddcl 11929 . . . . . . . 8 ((if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) ∈ ℕ0 ∧ (𝑊 · 𝐷) ∈ ℕ) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) ∈ ℕ)
6864, 66, 67syl2anc 586 . . . . . . 7 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) ∈ ℕ)
6968, 46fmptd 6878 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑃:(1...(𝑀 + 1))⟶ℕ)
70 nnex 11644 . . . . . . 7 ℕ ∈ V
71 ovex 7189 . . . . . . 7 (1...(𝑀 + 1)) ∈ V
7270, 71elmap 8435 . . . . . 6 (𝑃 ∈ (ℕ ↑m (1...(𝑀 + 1))) ↔ 𝑃:(1...(𝑀 + 1))⟶ℕ)
7369, 72sylibr 236 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑃 ∈ (ℕ ↑m (1...(𝑀 + 1))))
74 elfzp1 12958 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘1) → (𝑖 ∈ (1...(𝑀 + 1)) ↔ (𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1))))
7552, 74syl 17 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...(𝑀 + 1)) ↔ (𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1))))
7616adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ ℕ)
7776nncnd 11654 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ ℂ)
7877adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ ℂ)
7920ffvelrnda 6851 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℕ)
8079nncnd 11654 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℂ)
8180adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐸𝑖) ∈ ℂ)
8278, 81addcld 10660 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝐸𝑖)) ∈ ℂ)
83 nnm1nn0 11939 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
8441, 83syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 − 1) ∈ ℕ0)
85 nn0nnaddcl 11929 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝐴 − 1) + 𝑉) ∈ ℕ)
8684, 38, 85syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℕ)
8712, 86nnmulcld 11691 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
8887nncnd 11654 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
8988ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
90 elfznn0 13001 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
9190adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
9291nn0cnd 11958 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
9392adantlr 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
9493, 81mulcld 10661 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝐸𝑖)) ∈ ℂ)
9565nnnn0d 11956 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑊 · 𝐷) ∈ ℕ0)
9695adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · 𝐷) ∈ ℕ0)
9791, 96nn0mulcld 11961 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℕ0)
9897nn0cnd 11958 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℂ)
9998adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℂ)
10082, 89, 94, 99add4d 10868 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
10165nncnd 11654 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑊 · 𝐷) ∈ ℂ)
102101ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · 𝐷) ∈ ℂ)
10393, 81, 102adddid 10665 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))) = ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷))))
104103oveq2d 7172 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷)))))
10512nncnd 11654 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑊 ∈ ℂ)
106105adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℂ)
10786nncnd 11654 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℂ)
108107adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 − 1) + 𝑉) ∈ ℂ)
10942nncnd 11654 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐷 ∈ ℂ)
110109adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐷 ∈ ℂ)
11192, 110mulcld 10661 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ)
112106, 108, 111adddid 10665 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷))) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑊 · (𝑚 · 𝐷))))
11341nncnd 11654 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐴 ∈ ℂ)
114113adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈ ℂ)
115 1cnd 10636 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈ ℂ)
116114, 111, 115addsubd 11018 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) − 1) = ((𝐴 − 1) + (𝑚 · 𝐷)))
117116oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉) = (((𝐴 − 1) + (𝑚 · 𝐷)) + 𝑉))
11884nn0cnd 11958 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 − 1) ∈ ℂ)
119118adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 − 1) ∈ ℂ)
12038nncnd 11654 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑉 ∈ ℂ)
121120adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℂ)
122119, 111, 121add32d 10867 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 − 1) + (𝑚 · 𝐷)) + 𝑉) = (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷)))
123117, 122eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉) = (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷)))
124123oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = (𝑊 · (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷))))
12592, 106, 110mul12d 10849 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) = (𝑊 · (𝑚 · 𝐷)))
126125oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑊 · (𝑚 · 𝐷))))
127112, 124, 1263eqtr4d 2866 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))))
128127adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))))
129128oveq2d 7172 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
130100, 104, 1293eqtr4d 2866 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
13138ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℕ)
13212ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℕ)
13343adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
134 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))
135 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑚 → (𝑛 · 𝐷) = (𝑚 · 𝐷))
136135oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝑚 · 𝐷)))
137136rspceeqv 3638 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
138134, 137mpan2 689 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
13910nnnn0d 11956 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐾 ∈ ℕ0)
140 vdwapval 16309 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
141139, 41, 42, 140syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
142141biimpar 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
143138, 142sylan2 594 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
144133, 143sseldd 3968 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}))
14538, 12, 6, 39, 40vdwlem4 16320 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
146145ffnd 6515 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 Fn (1...𝑉))
147 fniniseg 6830 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 Fn (1...𝑉) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)))
148146, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)))
149148biimpa 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺})) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺))
150144, 149syldan 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺))
151150simpld 497 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉))
152151adantlr 713 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉))
15322r19.21bi 3208 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
154153adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
155 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))
156 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑛 · (𝐸𝑖)) = (𝑚 · (𝐸𝑖)))
157156oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))))
158157rspceeqv 3638 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) → ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))))
159155, 158mpan2 689 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))))
16010adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
161160nnnn0d 11956 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ0)
16276, 79nnaddcld 11690 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ ℕ)
163 vdwapval 16309 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0 ∧ (𝐵 + (𝐸𝑖)) ∈ ℕ ∧ (𝐸𝑖) ∈ ℕ) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))))
164161, 162, 79, 163syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))))
165164biimpar 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (1...𝑀)) ∧ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
166159, 165sylan2 594 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
167154, 166sseldd 3968 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
16814ffnd 6515 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 Fn (1...𝑊))
169168adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐺 Fn (1...𝑊))
170 fniniseg 6830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 Fn (1...𝑊) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
171169, 170syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
172171biimpa 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))})) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
173167, 172syldan 593 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
174173simpld 497 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊))
175131, 132, 152, 174vdwlem3 16319 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
176130, 175eqeltrd 2913 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))))
177 fvoveq1 7179 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) → (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
178 eqid 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
179 fvex 6683 . . . . . . . . . . . . . . . . . . . 20 (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) ∈ V
180177, 178, 179fvmpt 6768 . . . . . . . . . . . . . . . . . . 19 (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
181174, 180syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
182173simprd 498 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))
183150simprd 498 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)
184 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑥 − 1) = ((𝐴 + (𝑚 · 𝐷)) − 1))
185184oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → ((𝑥 − 1) + 𝑉) = (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))
186185oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))
187186oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
188187fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
189188mpteq2dv 5162 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
190 ovex 7189 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1...𝑊) ∈ V
191190mptex 6986 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))) ∈ V
192189, 40, 191fvmpt 6768 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
193151, 192syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
194183, 193eqtr3d 2858 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
195194adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
196195fveq1d 6672 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))))
197182, 196eqtr3d 2858 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))))
198130fveq2d 6674 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
199181, 197, 1983eqtr4rd 2867 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖))))
200176, 199jca 514 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
201 eleq1 2900 . . . . . . . . . . . . . . . . 17 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉)))))
202 fveqeq2 6679 . . . . . . . . . . . . . . . . 17 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → ((𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))) ↔ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
203201, 202anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → ((𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖)))) ↔ ((((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
204200, 203syl5ibrcom 249 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
205204rexlimdva 3284 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
20687adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
207162, 206nnaddcld 11690 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
20865adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · 𝐷) ∈ ℕ)
20979, 208nnaddcld 11690 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑊 · 𝐷)) ∈ ℕ)
210 vdwapval 16309 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0 ∧ ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ ∧ ((𝐸𝑖) + (𝑊 · 𝐷)) ∈ ℕ) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))))
211161, 207, 209, 210syl3anc 1367 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))))
21239ffnd 6515 . . . . . . . . . . . . . . . 16 (𝜑𝐻 Fn (1...(𝑊 · (2 · 𝑉))))
213212adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐻 Fn (1...(𝑊 · (2 · 𝑉))))
214 fniniseg 6830 . . . . . . . . . . . . . . 15 (𝐻 Fn (1...(𝑊 · (2 · 𝑉))) → (𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
215213, 214syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
216205, 211, 2153imtr4d 296 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) → 𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))})))
217216ssrdv 3973 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ⊆ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
218 ssun1 4148 . . . . . . . . . . . . . . . . . . 19 (1...𝑀) ⊆ ((1...𝑀) ∪ {(𝑀 + 1)})
219 fzsuc 12955 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (ℤ‘1) → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}))
22052, 219syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}))
221218, 220sseqtrrid 4020 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...𝑀) ⊆ (1...(𝑀 + 1)))
222221sselda 3967 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...(𝑀 + 1)))
223 eqeq1 2825 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝑗 = (𝑀 + 1) ↔ 𝑖 = (𝑀 + 1)))
224 fveq2 6670 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝐸𝑗) = (𝐸𝑖))
225223, 224ifbieq2d 4492 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) = if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)))
226225oveq1d 7171 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
227 ovex 7189 . . . . . . . . . . . . . . . . . 18 (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) ∈ V
228226, 46, 227fvmpt 6768 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(𝑀 + 1)) → (𝑃𝑖) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
229222, 228syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃𝑖) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
23018nnred 11653 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑀 ∈ ℝ)
231230ltp1d 11570 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 < (𝑀 + 1))
232 peano2re 10813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
233230, 232syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 + 1) ∈ ℝ)
234230, 233ltnled 10787 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀))
235231, 234mpbid 234 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ (𝑀 + 1) ≤ 𝑀)
236 breq1 5069 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑀 + 1) → (𝑖𝑀 ↔ (𝑀 + 1) ≤ 𝑀))
237236notbid 320 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑀 + 1) → (¬ 𝑖𝑀 ↔ ¬ (𝑀 + 1) ≤ 𝑀))
238235, 237syl5ibrcom 249 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑖 = (𝑀 + 1) → ¬ 𝑖𝑀))
239238con2d 136 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑖𝑀 → ¬ 𝑖 = (𝑀 + 1)))
240 elfzle2 12912 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
241239, 240impel 508 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ¬ 𝑖 = (𝑀 + 1))
242 iffalse 4476 . . . . . . . . . . . . . . . . . 18 𝑖 = (𝑀 + 1) → if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) = (𝐸𝑖))
243242oveq1d 7171 . . . . . . . . . . . . . . . . 17 𝑖 = (𝑀 + 1) → (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) = ((𝐸𝑖) + (𝑊 · 𝐷)))
244241, 243syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) = ((𝐸𝑖) + (𝑊 · 𝐷)))
245229, 244eqtrd 2856 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃𝑖) = ((𝐸𝑖) + (𝑊 · 𝐷)))
246245oveq2d 7172 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + (𝑃𝑖)) = (𝑇 + ((𝐸𝑖) + (𝑊 · 𝐷))))
24747nncnd 11654 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ ℂ)
248247adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑇 ∈ ℂ)
249101adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · 𝐷) ∈ ℂ)
250248, 80, 249add12d 10866 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + ((𝐸𝑖) + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))))
25145oveq1i 7166 . . . . . . . . . . . . . . . . . 18 (𝑇 + (𝑊 · 𝐷)) = ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷))
25216nncnd 11654 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ ℂ)
253120, 109subcld 10997 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑉𝐷) ∈ ℂ)
254113, 253addcld 10660 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + (𝑉𝐷)) ∈ ℂ)
255 ax-1cn 10595 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
256 subcl 10885 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 + (𝑉𝐷)) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℂ)
257254, 255, 256sylancl 588 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℂ)
258105, 257mulcld 10661 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℂ)
259252, 258, 101addassd 10663 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷)) = (𝐵 + ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷))))
260105, 257, 109adddid 10665 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · (((𝐴 + (𝑉𝐷)) − 1) + 𝐷)) = ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷)))
261113, 253, 109addassd 10663 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐴 + (𝑉𝐷)) + 𝐷) = (𝐴 + ((𝑉𝐷) + 𝐷)))
262120, 109npcand 11001 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝑉𝐷) + 𝐷) = 𝑉)
263262oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐴 + ((𝑉𝐷) + 𝐷)) = (𝐴 + 𝑉))
264261, 263eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴 + (𝑉𝐷)) + 𝐷) = (𝐴 + 𝑉))
265264oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + (𝑉𝐷)) + 𝐷) − 1) = ((𝐴 + 𝑉) − 1))
266 1cnd 10636 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℂ)
267254, 109, 266addsubd 11018 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + (𝑉𝐷)) + 𝐷) − 1) = (((𝐴 + (𝑉𝐷)) − 1) + 𝐷))
268113, 120, 266addsubd 11018 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + 𝑉) − 1) = ((𝐴 − 1) + 𝑉))
269265, 267, 2683eqtr3d 2864 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐴 + (𝑉𝐷)) − 1) + 𝐷) = ((𝐴 − 1) + 𝑉))
270269oveq2d 7172 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · (((𝐴 + (𝑉𝐷)) − 1) + 𝐷)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
271260, 270eqtr3d 2858 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
272271oveq2d 7172 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵 + ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷))) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
273259, 272eqtrd 2856 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷)) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
274251, 273syl5eq 2868 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑇 + (𝑊 · 𝐷)) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
275274oveq2d 7172 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
276275adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
27788adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
27880, 77, 277addassd 10663 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐸𝑖) + 𝐵) + (𝑊 · ((𝐴 − 1) + 𝑉))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
27980, 77addcomd 10842 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + 𝐵) = (𝐵 + (𝐸𝑖)))
280279oveq1d 7171 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐸𝑖) + 𝐵) + (𝑊 · ((𝐴 − 1) + 𝑉))) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
281276, 278, 2803eqtr2d 2862 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
282246, 250, 2813eqtrd 2860 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + (𝑃𝑖)) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
283282, 245oveq12d 7174 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))))
284 cnvimass 5949 . . . . . . . . . . . . . . . . . . 19 (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ dom 𝐺
285284, 14fssdm 6530 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ (1...𝑊))
286285adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ (1...𝑊))
287 vdwapid1 16311 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ ∧ (𝐵 + (𝐸𝑖)) ∈ ℕ ∧ (𝐸𝑖) ∈ ℕ) → (𝐵 + (𝐸𝑖)) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
288160, 162, 79, 287syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
289153, 288sseldd 3968 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
290286, 289sseldd 3968 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (1...𝑊))
291 fvoveq1 7179 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐵 + (𝐸𝑖)) → (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
292 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
293 fvex 6683 . . . . . . . . . . . . . . . . 17 (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))) ∈ V
294291, 292, 293fvmpt 6768 . . . . . . . . . . . . . . . 16 ((𝐵 + (𝐸𝑖)) ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
295290, 294syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
296 vdwapid1 16311 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
29710, 41, 42, 296syl3anc 1367 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
29843, 297sseldd 3968 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ (𝐹 “ {𝐺}))
299 fniniseg 6830 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn (1...𝑉) → (𝐴 ∈ (𝐹 “ {𝐺}) ↔ (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺)))
300146, 299syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 ∈ (𝐹 “ {𝐺}) ↔ (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺)))
301298, 300mpbid 234 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺))
302301simprd 498 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴) = 𝐺)
303301simpld 497 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ (1...𝑉))
304 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1))
305304oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐴 → ((𝑥 − 1) + 𝑉) = ((𝐴 − 1) + 𝑉))
306305oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝐴 → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
307306oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝐴 → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))
308307fveq2d 6674 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝐴 → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
309308mpteq2dv 5162 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝐴 → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
310190mptex 6986 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))) ∈ V
311309, 40, 310fvmpt 6768 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ (1...𝑉) → (𝐹𝐴) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
312303, 311syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
313302, 312eqtr3d 2858 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
314313fveq1d 6672 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))))
315314adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))))
316282fveq2d 6674 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
317295, 315, 3163eqtr4rd 2867 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐺‘(𝐵 + (𝐸𝑖))))
318317sneqd 4579 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → {(𝐻‘(𝑇 + (𝑃𝑖)))} = {(𝐺‘(𝐵 + (𝐸𝑖)))})
319318imaeq2d 5929 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) = (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
320217, 283, 3193sstr4d 4014 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
321320ex 415 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (1...𝑀) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
322252adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ ℂ)
32388adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
324322, 323, 98addassd 10663 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) = (𝐵 + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
325127oveq2d 7172 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) = (𝐵 + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
326324, 325eqtr4d 2859 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) = (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
32738adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℕ)
32812adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℕ)
329 eluzfz1 12915 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ (ℤ‘1) → 1 ∈ (1...𝑀))
33052, 329syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ (1...𝑀))
331330ne0d 4301 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1...𝑀) ≠ ∅)
332 elfzuz3 12906 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 + (𝐸𝑖)) ∈ (1...𝑊) → 𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))))
333290, 332syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))))
33416nnzd 12087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐵 ∈ ℤ)
335 uzid 12259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ𝐵))
336334, 335syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ (ℤ𝐵))
337336adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ (ℤ𝐵))
33879nnnn0d 11956 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℕ0)
339 uzaddcl 12305 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ (ℤ𝐵) ∧ (𝐸𝑖) ∈ ℕ0) → (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵))
340337, 338, 339syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵))
341 uztrn 12262 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))) ∧ (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵)) → 𝑊 ∈ (ℤ𝐵))
342333, 340, 341syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑊 ∈ (ℤ𝐵))
343 eluzle 12257 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑊 ∈ (ℤ𝐵) → 𝐵𝑊)
344342, 343syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵𝑊)
345344ralrimiva 3182 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑖 ∈ (1...𝑀)𝐵𝑊)
346 r19.2z 4440 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑀) ≠ ∅ ∧ ∀𝑖 ∈ (1...𝑀)𝐵𝑊) → ∃𝑖 ∈ (1...𝑀)𝐵𝑊)
347331, 345, 346syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∃𝑖 ∈ (1...𝑀)𝐵𝑊)
348 idd 24 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (1...𝑀) → (𝐵𝑊𝐵𝑊))
349348rexlimiv 3280 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑖 ∈ (1...𝑀)𝐵𝑊𝐵𝑊)
350347, 349syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵𝑊)
35112nnzd 12087 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑊 ∈ ℤ)
352 fznn 12976 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ ℤ → (𝐵 ∈ (1...𝑊) ↔ (𝐵 ∈ ℕ ∧ 𝐵𝑊)))
353351, 352syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 ∈ (1...𝑊) ↔ (𝐵 ∈ ℕ ∧ 𝐵𝑊)))
35416, 350, 353mpbir2and 711 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ (1...𝑊))
355354adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ (1...𝑊))
356327, 328, 151, 355vdwlem3 16319 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
357326, 356eqeltrd 2913 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))))
358 fvoveq1 7179 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
359 fvex 6683 . . . . . . . . . . . . . . . . . . . 20 (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) ∈ V
360358, 178, 359fvmpt 6768 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
361355, 360syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
362194fveq1d 6672 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐺𝐵) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵))
363326fveq2d 6674 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
364361, 362, 3633eqtr4rd 2867 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵))
365357, 364jca 514 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵)))
366 eleq1 2900 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ↔ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉)))))
367 fveqeq2 6679 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → ((𝐻𝑧) = (𝐺𝐵) ↔ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵)))
368366, 367anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → ((𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵)) ↔ (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵))))
369365, 368syl5ibrcom 249 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
370369rexlimdva 3284 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
37116, 87nnaddcld 11690 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
372 vdwapval 16309 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0 ∧ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ ∧ (𝑊 · 𝐷) ∈ ℕ) → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))))
373139, 371, 65, 372syl3anc 1367 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))))
374 fniniseg 6830 . . . . . . . . . . . . . . 15 (𝐻 Fn (1...(𝑊 · (2 · 𝑉))) → (𝑧 ∈ (𝐻 “ {(𝐺𝐵)}) ↔ (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
375212, 374syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ (𝐻 “ {(𝐺𝐵)}) ↔ (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
376370, 373, 3753imtr4d 296 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) → 𝑧 ∈ (𝐻 “ {(𝐺𝐵)})))
377376ssrdv 3973 . . . . . . . . . . . 12 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ⊆ (𝐻 “ {(𝐺𝐵)}))
37818peano2nnd 11655 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + 1) ∈ ℕ)
379378, 51eleqtrdi 2923 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
380 eluzfz2 12916 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) ∈ (ℤ‘1) → (𝑀 + 1) ∈ (1...(𝑀 + 1)))
381 iftrue 4473 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑀 + 1) → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) = 0)
382381oveq1d 7171 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑀 + 1) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) = (0 + (𝑊 · 𝐷)))
383 ovex 7189 . . . . . . . . . . . . . . . . . 18 (0 + (𝑊 · 𝐷)) ∈ V
384382, 46, 383fvmpt 6768 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) ∈ (1...(𝑀 + 1)) → (𝑃‘(𝑀 + 1)) = (0 + (𝑊 · 𝐷)))
385379, 380, 3843syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃‘(𝑀 + 1)) = (0 + (𝑊 · 𝐷)))
386101addid2d 10841 . . . . . . . . . . . . . . . 16 (𝜑 → (0 + (𝑊 · 𝐷)) = (𝑊 · 𝐷))
387385, 386eqtrd 2856 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃‘(𝑀 + 1)) = (𝑊 · 𝐷))
388387oveq2d 7172 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 + (𝑃‘(𝑀 + 1))) = (𝑇 + (𝑊 · 𝐷)))
389388, 274eqtrd 2856 . . . . . . . . . . . . 13 (𝜑 → (𝑇 + (𝑃‘(𝑀 + 1))) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
390389, 387oveq12d 7174 . . . . . . . . . . . 12 (𝜑 → ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)))
391 fvoveq1 7179 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
392 fvex 6683 . . . . . . . . . . . . . . . . 17 (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))) ∈ V
393391, 292, 392fvmpt 6768 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
394354, 393syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
395313fveq1d 6672 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝐵) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵))
396389fveq2d 6674 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
397394, 395, 3963eqtr4rd 2867 . . . . . . . . . . . . . 14 (𝜑 → (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) = (𝐺𝐵))
398397sneqd 4579 . . . . . . . . . . . . 13 (𝜑 → {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))} = {(𝐺𝐵)})
399398imaeq2d 5929 . . . . . . . . . . . 12 (𝜑 → (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}) = (𝐻 “ {(𝐺𝐵)}))
400377, 390, 3993sstr4d 4014 . . . . . . . . . . 11 (𝜑 → ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}))
401 fveq2 6670 . . . . . . . . . . . . . 14 (𝑖 = (𝑀 + 1) → (𝑃𝑖) = (𝑃‘(𝑀 + 1)))
402401oveq2d 7172 . . . . . . . . . . . . 13 (𝑖 = (𝑀 + 1) → (𝑇 + (𝑃𝑖)) = (𝑇 + (𝑃‘(𝑀 + 1))))
403402, 401oveq12d 7174 . . . . . . . . . . . 12 (𝑖 = (𝑀 + 1) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) = ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))))
404402fveq2d 6674 . . . . . . . . . . . . . 14 (𝑖 = (𝑀 + 1) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))))
405404sneqd 4579 . . . . . . . . . . . . 13 (𝑖 = (𝑀 + 1) → {(𝐻‘(𝑇 + (𝑃𝑖)))} = {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))})
406405imaeq2d 5929 . . . . . . . . . . . 12 (𝑖 = (𝑀 + 1) → (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}))
407403, 406sseq12d 4000 . . . . . . . . . . 11 (𝑖 = (𝑀 + 1) → (((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ↔ ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))})))
408400, 407syl5ibrcom 249 . . . . . . . . . 10 (𝜑 → (𝑖 = (𝑀 + 1) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
409321, 408jaod 855 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
41075, 409sylbid 242 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...(𝑀 + 1)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
411410ralrimiv 3181 . . . . . . 7 (𝜑 → ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
412411adantr 483 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
413220rexeqdv 3416 . . . . . . . . . . . 12 (𝜑 → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ ∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))))
414 rexun 4166 . . . . . . . . . . . . 13 (∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ∨ ∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))))
415317eqeq2d 2832 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))))
416415rexbidva 3296 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))))
417 ovex 7189 . . . . . . . . . . . . . . . 16 (𝑀 + 1) ∈ V
418404eqeq2d 2832 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑀 + 1) → (𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))))
419417, 418rexsn 4620 . . . . . . . . . . . . . . 15 (∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))))
420397eqeq2d 2832 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) ↔ 𝑥 = (𝐺𝐵)))
421419, 420syl5bb 285 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐺𝐵)))
422416, 421orbi12d 915 . . . . . . . . . . . . 13 (𝜑 → ((∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ∨ ∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
423414, 422syl5bb 285 . . . . . . . . . . . 12 (𝜑 → (∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
424413, 423bitrd 281 . . . . . . . . . . 11 (𝜑 → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
425424adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
426425abbidv 2885 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → {𝑥 ∣ ∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))} = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))})
427 eqid 2821 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))
428427rnmpt 5827 . . . . . . . . 9 ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = {𝑥 ∣ ∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))}
4292rnmpt 5827 . . . . . . . . . . 11 ran 𝐽 = {𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))}
430 df-sn 4568 . . . . . . . . . . 11 {(𝐺𝐵)} = {𝑥𝑥 = (𝐺𝐵)}
431429, 430uneq12i 4137 . . . . . . . . . 10 (ran 𝐽 ∪ {(𝐺𝐵)}) = ({𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))} ∪ {𝑥𝑥 = (𝐺𝐵)})
432 unab 4270 . . . . . . . . . 10 ({𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))} ∪ {𝑥𝑥 = (𝐺𝐵)}) = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))}
433431, 432eqtri 2844 . . . . . . . . 9 (ran 𝐽 ∪ {(𝐺𝐵)}) = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))}
434426, 428, 4333eqtr4g 2881 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = (ran 𝐽 ∪ {(𝐺𝐵)}))
435434fveq2d 6674 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})))
436 fzfi 13341 . . . . . . . . . 10 (1...𝑀) ∈ Fin
437 dffn4 6596 . . . . . . . . . . 11 (𝐽 Fn (1...𝑀) ↔ 𝐽:(1...𝑀)–onto→ran 𝐽)
4383, 437mpbi 232 . . . . . . . . . 10 𝐽:(1...𝑀)–onto→ran 𝐽
439 fofi 8810 . . . . . . . . . 10 (((1...𝑀) ∈ Fin ∧ 𝐽:(1...𝑀)–onto→ran 𝐽) → ran 𝐽 ∈ Fin)
440436, 438, 439mp2an 690 . . . . . . . . 9 ran 𝐽 ∈ Fin
441440a1i 11 . . . . . . . 8 (𝜑 → ran 𝐽 ∈ Fin)
442 fvex 6683 . . . . . . . . 9 (𝐺𝐵) ∈ V
443 hashunsng 13754 . . . . . . . . 9 ((𝐺𝐵) ∈ V → ((ran 𝐽 ∈ Fin ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((♯‘ran 𝐽) + 1)))
444442, 443ax-mp 5 . . . . . . . 8 ((ran 𝐽 ∈ Fin ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((♯‘ran 𝐽) + 1))
445441, 444sylan 582 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((♯‘ran 𝐽) + 1))
44644adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘ran 𝐽) = 𝑀)
447446oveq1d 7171 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ((♯‘ran 𝐽) + 1) = (𝑀 + 1))
448435, 445, 4473eqtrd 2860 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))
449412, 448jca 514 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1)))
450 oveq1 7163 . . . . . . . . . 10 (𝑎 = 𝑇 → (𝑎 + (𝑑𝑖)) = (𝑇 + (𝑑𝑖)))
451450oveq1d 7171 . . . . . . . . 9 (𝑎 = 𝑇 → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
452 fvoveq1 7179 . . . . . . . . . . 11 (𝑎 = 𝑇 → (𝐻‘(𝑎 + (𝑑𝑖))) = (𝐻‘(𝑇 + (𝑑𝑖))))
453452sneqd 4579 . . . . . . . . . 10 (𝑎 = 𝑇 → {(𝐻‘(𝑎 + (𝑑𝑖)))} = {(𝐻‘(𝑇 + (𝑑𝑖)))})
454453imaeq2d 5929 . . . . . . . . 9 (𝑎 = 𝑇 → (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}))
455451, 454sseq12d 4000 . . . . . . . 8 (𝑎 = 𝑇 → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ↔ ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))})))
456455ralbidv 3197 . . . . . . 7 (𝑎 = 𝑇 → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))})))
457452mpteq2dv 5162 . . . . . . . . 9 (𝑎 = 𝑇 → (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))))
458457rneqd 5808 . . . . . . . 8 (𝑎 = 𝑇 → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖)))) = ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))))
459458fveqeq2d 6678 . . . . . . 7 (𝑎 = 𝑇 → ((♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1) ↔ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1)))
460456, 459anbi12d 632 . . . . . 6 (𝑎 = 𝑇 → ((∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1))))
461 fveq1 6669 . . . . . . . . . . 11 (𝑑 = 𝑃 → (𝑑𝑖) = (𝑃𝑖))
462461oveq2d 7172 . . . . . . . . . 10 (𝑑 = 𝑃 → (𝑇 + (𝑑𝑖)) = (𝑇 + (𝑃𝑖)))
463462, 461oveq12d 7174 . . . . . . . . 9 (𝑑 = 𝑃 → ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)))
464462fveq2d 6674 . . . . . . . . . . 11 (𝑑 = 𝑃 → (𝐻‘(𝑇 + (𝑑𝑖))) = (𝐻‘(𝑇 + (𝑃𝑖))))
465464sneqd 4579 . . . . . . . . . 10 (𝑑 = 𝑃 → {(𝐻‘(𝑇 + (𝑑𝑖)))} = {(𝐻‘(𝑇 + (𝑃𝑖)))})
466465imaeq2d 5929 . . . . . . . . 9 (𝑑 = 𝑃 → (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
467463, 466sseq12d 4000 . . . . . . . 8 (𝑑 = 𝑃 → (((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ↔ ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
468467ralbidv 3197 . . . . . . 7 (𝑑 = 𝑃 → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
469464mpteq2dv 5162 . . . . . . . . 9 (𝑑 = 𝑃 → (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))))
470469rneqd 5808 . . . . . . . 8 (𝑑 = 𝑃 → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))) = ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))))
471470fveqeq2d 6678 . . . . . . 7 (𝑑 = 𝑃 → ((♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1) ↔ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1)))
472468, 471anbi12d 632 . . . . . 6 (𝑑 = 𝑃 → ((∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))))
473460, 472rspc2ev 3635 . . . . 5 ((𝑇 ∈ ℕ ∧ 𝑃 ∈ (ℕ ↑m (1...(𝑀 + 1))) ∧ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)))
47448, 73, 449, 473syl3anc 1367 . . . 4 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)))
475 ovex 7189 . . . . 5 (1...(𝑊 · (2 · 𝑉))) ∈ V
47610adantr 483 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐾 ∈ ℕ)
477476nnnn0d 11956 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐾 ∈ ℕ0)
47839adantr 483 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
47918adantr 483 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑀 ∈ ℕ)
480479peano2nnd 11655 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (𝑀 + 1) ∈ ℕ)
481 eqid 2821 . . . . 5 (1...(𝑀 + 1)) = (1...(𝑀 + 1))
482475, 477, 478, 480, 481vdwpc 16316 . . . 4 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1))))
483474, 482mpbird 259 . . 3 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻)
484483orcd 869 . 2 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
48537, 484pm2.61dan 811 1 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cun 3934  wss 3936  c0 4291  ifcif 4467  {csn 4567  cop 4573   class class class wbr 5066  cmpt 5146  ccnv 5554  ran crn 5556  cima 5558   Fn wfn 6350  wf 6351  ontowfo 6353  cfv 6355  (class class class)co 7156  m cmap 8406  Fincfn 8509  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  cn 11638  2c2 11693  0cn0 11898  cz 11982  cuz 12244  ...cfz 12893  chash 13691  APcvdwa 16301   MonoAP cvdwm 16302   PolyAP cvdwp 16303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-hash 13692  df-vdwap 16304  df-vdwmc 16305  df-vdwpc 16306
This theorem is referenced by:  vdwlem7  16323
  Copyright terms: Public domain W3C validator