MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem6 Structured version   Visualization version   GIF version

Theorem vdwlem6 17006
Description: Lemma for vdw 17014. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
vdwlem6.b (𝜑𝐵 ∈ ℕ)
vdwlem6.e (𝜑𝐸:(1...𝑀)⟶ℕ)
vdwlem6.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
vdwlem6.j 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
vdwlem6.r (𝜑 → (♯‘ran 𝐽) = 𝑀)
vdwlem6.t 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
vdwlem6.p 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
Assertion
Ref Expression
vdwlem6 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑖,𝑗,𝑥,𝑦,𝐺   𝑖,𝐾,𝑗,𝑥,𝑦   𝑖,𝐽,𝑗,𝑥   𝑃,𝑖,𝑥   𝜑,𝑖,𝑗,𝑥,𝑦   𝑅,𝑖,𝑥,𝑦   𝐵,𝑖,𝑗,𝑥,𝑦   𝑖,𝐻,𝑥,𝑦   𝑖,𝑀,𝑗,𝑥,𝑦   𝐷,𝑗,𝑥,𝑦   𝑖,𝐸,𝑗,𝑥,𝑦   𝑖,𝑊,𝑗,𝑥,𝑦   𝑇,𝑖,𝑥   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖)   𝑃(𝑦,𝑗)   𝑅(𝑗)   𝑇(𝑦,𝑗)   𝐹(𝑥,𝑦,𝑖,𝑗)   𝐻(𝑗)   𝐽(𝑦)   𝑉(𝑖,𝑗)

Proof of Theorem vdwlem6
Dummy variables 𝑚 𝑛 𝑧 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6889 . . . . . . 7 (𝐺‘(𝐵 + (𝐸𝑖))) ∈ V
2 vdwlem6.j . . . . . . 7 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
31, 2fnmpti 6681 . . . . . 6 𝐽 Fn (1...𝑀)
4 fvelrnb 6939 . . . . . 6 (𝐽 Fn (1...𝑀) → ((𝐺𝐵) ∈ ran 𝐽 ↔ ∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵)))
53, 4ax-mp 5 . . . . 5 ((𝐺𝐵) ∈ ran 𝐽 ↔ ∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵))
6 vdwlem4.r . . . . . . . 8 (𝜑𝑅 ∈ Fin)
76adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑅 ∈ Fin)
8 vdwlem7.k . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ‘2))
9 eluz2nn 12898 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
108, 9syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℕ)
1110adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐾 ∈ ℕ)
12 vdwlem3.w . . . . . . . 8 (𝜑𝑊 ∈ ℕ)
1312adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑊 ∈ ℕ)
14 vdwlem7.g . . . . . . . 8 (𝜑𝐺:(1...𝑊)⟶𝑅)
1514adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐺:(1...𝑊)⟶𝑅)
16 vdwlem6.b . . . . . . . 8 (𝜑𝐵 ∈ ℕ)
1716adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐵 ∈ ℕ)
18 vdwlem7.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
1918adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑀 ∈ ℕ)
20 vdwlem6.e . . . . . . . 8 (𝜑𝐸:(1...𝑀)⟶ℕ)
2120adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐸:(1...𝑀)⟶ℕ)
22 vdwlem6.s . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
2322adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
24 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑚 ∈ (1...𝑀))
25 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐽𝑚) = (𝐺𝐵))
26 fveq2 6876 . . . . . . . . . . . 12 (𝑖 = 𝑚 → (𝐸𝑖) = (𝐸𝑚))
2726oveq2d 7421 . . . . . . . . . . 11 (𝑖 = 𝑚 → (𝐵 + (𝐸𝑖)) = (𝐵 + (𝐸𝑚)))
2827fveq2d 6880 . . . . . . . . . 10 (𝑖 = 𝑚 → (𝐺‘(𝐵 + (𝐸𝑖))) = (𝐺‘(𝐵 + (𝐸𝑚))))
29 fvex 6889 . . . . . . . . . 10 (𝐺‘(𝐵 + (𝐸𝑚))) ∈ V
3028, 2, 29fvmpt 6986 . . . . . . . . 9 (𝑚 ∈ (1...𝑀) → (𝐽𝑚) = (𝐺‘(𝐵 + (𝐸𝑚))))
3124, 30syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐽𝑚) = (𝐺‘(𝐵 + (𝐸𝑚))))
3225, 31eqtr3d 2772 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐺𝐵) = (𝐺‘(𝐵 + (𝐸𝑚))))
337, 11, 13, 15, 17, 19, 21, 23, 24, 32vdwlem1 17001 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐾 + 1) MonoAP 𝐺)
3433rexlimdvaa 3142 . . . . 5 (𝜑 → (∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵) → (𝐾 + 1) MonoAP 𝐺))
355, 34biimtrid 242 . . . 4 (𝜑 → ((𝐺𝐵) ∈ ran 𝐽 → (𝐾 + 1) MonoAP 𝐺))
3635imp 406 . . 3 ((𝜑 ∧ (𝐺𝐵) ∈ ran 𝐽) → (𝐾 + 1) MonoAP 𝐺)
3736olcd 874 . 2 ((𝜑 ∧ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
38 vdwlem3.v . . . . . . 7 (𝜑𝑉 ∈ ℕ)
39 vdwlem4.h . . . . . . 7 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
40 vdwlem4.f . . . . . . 7 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
41 vdwlem7.a . . . . . . 7 (𝜑𝐴 ∈ ℕ)
42 vdwlem7.d . . . . . . 7 (𝜑𝐷 ∈ ℕ)
43 vdwlem7.s . . . . . . 7 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
44 vdwlem6.r . . . . . . 7 (𝜑 → (♯‘ran 𝐽) = 𝑀)
45 vdwlem6.t . . . . . . 7 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
46 vdwlem6.p . . . . . . 7 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
4738, 12, 6, 39, 40, 18, 14, 8, 41, 42, 43, 16, 20, 22, 2, 44, 45, 46vdwlem5 17005 . . . . . 6 (𝜑𝑇 ∈ ℕ)
4847adantr 480 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑇 ∈ ℕ)
49 0nn0 12516 . . . . . . . . . 10 0 ∈ ℕ0
5049a1i 11 . . . . . . . . 9 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 = (𝑀 + 1)) → 0 ∈ ℕ0)
51 nnuz 12895 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
5218, 51eleqtrdi 2844 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (ℤ‘1))
5352adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑀 ∈ (ℤ‘1))
54 elfzp1 13591 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘1) → (𝑗 ∈ (1...(𝑀 + 1)) ↔ (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1))))
5553, 54syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (𝑗 ∈ (1...(𝑀 + 1)) ↔ (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1))))
5655biimpa 476 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1)))
5756ord 864 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (¬ 𝑗 ∈ (1...𝑀) → 𝑗 = (𝑀 + 1)))
5857con1d 145 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (¬ 𝑗 = (𝑀 + 1) → 𝑗 ∈ (1...𝑀)))
5958imp 406 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ ¬ 𝑗 = (𝑀 + 1)) → 𝑗 ∈ (1...𝑀))
6020ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → 𝐸:(1...𝑀)⟶ℕ)
6160ffvelcdmda 7074 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 ∈ (1...𝑀)) → (𝐸𝑗) ∈ ℕ)
6261nnnn0d 12562 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 ∈ (1...𝑀)) → (𝐸𝑗) ∈ ℕ0)
6359, 62syldan 591 . . . . . . . . 9 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ ¬ 𝑗 = (𝑀 + 1)) → (𝐸𝑗) ∈ ℕ0)
6450, 63ifclda 4536 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) ∈ ℕ0)
6512, 42nnmulcld 12293 . . . . . . . . 9 (𝜑 → (𝑊 · 𝐷) ∈ ℕ)
6665ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (𝑊 · 𝐷) ∈ ℕ)
67 nn0nnaddcl 12532 . . . . . . . 8 ((if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) ∈ ℕ0 ∧ (𝑊 · 𝐷) ∈ ℕ) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) ∈ ℕ)
6864, 66, 67syl2anc 584 . . . . . . 7 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) ∈ ℕ)
6968, 46fmptd 7104 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑃:(1...(𝑀 + 1))⟶ℕ)
70 nnex 12246 . . . . . . 7 ℕ ∈ V
71 ovex 7438 . . . . . . 7 (1...(𝑀 + 1)) ∈ V
7270, 71elmap 8885 . . . . . 6 (𝑃 ∈ (ℕ ↑m (1...(𝑀 + 1))) ↔ 𝑃:(1...(𝑀 + 1))⟶ℕ)
7369, 72sylibr 234 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑃 ∈ (ℕ ↑m (1...(𝑀 + 1))))
74 elfzp1 13591 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘1) → (𝑖 ∈ (1...(𝑀 + 1)) ↔ (𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1))))
7552, 74syl 17 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...(𝑀 + 1)) ↔ (𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1))))
7616adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ ℕ)
7776nncnd 12256 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ ℂ)
7877adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ ℂ)
7920ffvelcdmda 7074 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℕ)
8079nncnd 12256 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℂ)
8180adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐸𝑖) ∈ ℂ)
8278, 81addcld 11254 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝐸𝑖)) ∈ ℂ)
83 nnm1nn0 12542 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
8441, 83syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 − 1) ∈ ℕ0)
85 nn0nnaddcl 12532 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝐴 − 1) + 𝑉) ∈ ℕ)
8684, 38, 85syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℕ)
8712, 86nnmulcld 12293 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
8887nncnd 12256 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
8988ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
90 elfznn0 13637 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
9190adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
9291nn0cnd 12564 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
9392adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
9493, 81mulcld 11255 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝐸𝑖)) ∈ ℂ)
9565nnnn0d 12562 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑊 · 𝐷) ∈ ℕ0)
9695adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · 𝐷) ∈ ℕ0)
9791, 96nn0mulcld 12567 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℕ0)
9897nn0cnd 12564 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℂ)
9998adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℂ)
10082, 89, 94, 99add4d 11464 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
10165nncnd 12256 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑊 · 𝐷) ∈ ℂ)
102101ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · 𝐷) ∈ ℂ)
10393, 81, 102adddid 11259 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))) = ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷))))
104103oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷)))))
10512nncnd 12256 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑊 ∈ ℂ)
106105adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℂ)
10786nncnd 12256 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℂ)
108107adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 − 1) + 𝑉) ∈ ℂ)
10942nncnd 12256 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐷 ∈ ℂ)
110109adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐷 ∈ ℂ)
11192, 110mulcld 11255 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ)
112106, 108, 111adddid 11259 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷))) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑊 · (𝑚 · 𝐷))))
11341nncnd 12256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐴 ∈ ℂ)
114113adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈ ℂ)
115 1cnd 11230 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈ ℂ)
116114, 111, 115addsubd 11615 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) − 1) = ((𝐴 − 1) + (𝑚 · 𝐷)))
117116oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉) = (((𝐴 − 1) + (𝑚 · 𝐷)) + 𝑉))
11884nn0cnd 12564 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 − 1) ∈ ℂ)
119118adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 − 1) ∈ ℂ)
12038nncnd 12256 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑉 ∈ ℂ)
121120adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℂ)
122119, 111, 121add32d 11463 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 − 1) + (𝑚 · 𝐷)) + 𝑉) = (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷)))
123117, 122eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉) = (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷)))
124123oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = (𝑊 · (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷))))
12592, 106, 110mul12d 11444 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) = (𝑊 · (𝑚 · 𝐷)))
126125oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑊 · (𝑚 · 𝐷))))
127112, 124, 1263eqtr4d 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))))
128127adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))))
129128oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
130100, 104, 1293eqtr4d 2780 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
13138ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℕ)
13212ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℕ)
13343adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
134 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))
135 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑚 → (𝑛 · 𝐷) = (𝑚 · 𝐷))
136135oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝑚 · 𝐷)))
137136rspceeqv 3624 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
138134, 137mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
13910nnnn0d 12562 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐾 ∈ ℕ0)
140 vdwapval 16993 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
141139, 41, 42, 140syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
142141biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
143138, 142sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
144133, 143sseldd 3959 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}))
14538, 12, 6, 39, 40vdwlem4 17004 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
146145ffnd 6707 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 Fn (1...𝑉))
147 fniniseg 7050 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 Fn (1...𝑉) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)))
148146, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)))
149148biimpa 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺})) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺))
150144, 149syldan 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺))
151150simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉))
152151adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉))
15322r19.21bi 3234 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
154153adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
155 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))
156 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑛 · (𝐸𝑖)) = (𝑚 · (𝐸𝑖)))
157156oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))))
158157rspceeqv 3624 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) → ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))))
159155, 158mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))))
16010adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
161160nnnn0d 12562 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ0)
16276, 79nnaddcld 12292 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ ℕ)
163 vdwapval 16993 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0 ∧ (𝐵 + (𝐸𝑖)) ∈ ℕ ∧ (𝐸𝑖) ∈ ℕ) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))))
164161, 162, 79, 163syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))))
165164biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (1...𝑀)) ∧ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
166159, 165sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
167154, 166sseldd 3959 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
16814ffnd 6707 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 Fn (1...𝑊))
169168adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐺 Fn (1...𝑊))
170 fniniseg 7050 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 Fn (1...𝑊) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
171169, 170syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
172171biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))})) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
173167, 172syldan 591 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
174173simpld 494 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊))
175131, 132, 152, 174vdwlem3 17003 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
176130, 175eqeltrd 2834 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))))
177 fvoveq1 7428 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) → (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
178 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
179 fvex 6889 . . . . . . . . . . . . . . . . . . . 20 (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) ∈ V
180177, 178, 179fvmpt 6986 . . . . . . . . . . . . . . . . . . 19 (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
181174, 180syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
182173simprd 495 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))
183150simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)
184 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑥 − 1) = ((𝐴 + (𝑚 · 𝐷)) − 1))
185184oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → ((𝑥 − 1) + 𝑉) = (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))
186185oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))
187186oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
188187fveq2d 6880 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
189188mpteq2dv 5215 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
190 ovex 7438 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1...𝑊) ∈ V
191190mptex 7215 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))) ∈ V
192189, 40, 191fvmpt 6986 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
193151, 192syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
194183, 193eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
195194adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
196195fveq1d 6878 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))))
197182, 196eqtr3d 2772 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))))
198130fveq2d 6880 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
199181, 197, 1983eqtr4rd 2781 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖))))
200176, 199jca 511 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
201 eleq1 2822 . . . . . . . . . . . . . . . . 17 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉)))))
202 fveqeq2 6885 . . . . . . . . . . . . . . . . 17 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → ((𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))) ↔ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
203201, 202anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → ((𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖)))) ↔ ((((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
204200, 203syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
205204rexlimdva 3141 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
20687adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
207162, 206nnaddcld 12292 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
20865adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · 𝐷) ∈ ℕ)
20979, 208nnaddcld 12292 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑊 · 𝐷)) ∈ ℕ)
210 vdwapval 16993 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0 ∧ ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ ∧ ((𝐸𝑖) + (𝑊 · 𝐷)) ∈ ℕ) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))))
211161, 207, 209, 210syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))))
21239ffnd 6707 . . . . . . . . . . . . . . . 16 (𝜑𝐻 Fn (1...(𝑊 · (2 · 𝑉))))
213212adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐻 Fn (1...(𝑊 · (2 · 𝑉))))
214 fniniseg 7050 . . . . . . . . . . . . . . 15 (𝐻 Fn (1...(𝑊 · (2 · 𝑉))) → (𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
215213, 214syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
216205, 211, 2153imtr4d 294 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) → 𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))})))
217216ssrdv 3964 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ⊆ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
218 ssun1 4153 . . . . . . . . . . . . . . . . . . 19 (1...𝑀) ⊆ ((1...𝑀) ∪ {(𝑀 + 1)})
219 fzsuc 13588 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (ℤ‘1) → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}))
22052, 219syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}))
221218, 220sseqtrrid 4002 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...𝑀) ⊆ (1...(𝑀 + 1)))
222221sselda 3958 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...(𝑀 + 1)))
223 eqeq1 2739 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝑗 = (𝑀 + 1) ↔ 𝑖 = (𝑀 + 1)))
224 fveq2 6876 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝐸𝑗) = (𝐸𝑖))
225223, 224ifbieq2d 4527 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) = if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)))
226225oveq1d 7420 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
227 ovex 7438 . . . . . . . . . . . . . . . . . 18 (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) ∈ V
228226, 46, 227fvmpt 6986 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(𝑀 + 1)) → (𝑃𝑖) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
229222, 228syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃𝑖) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
23018nnred 12255 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑀 ∈ ℝ)
231230ltp1d 12172 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 < (𝑀 + 1))
232 peano2re 11408 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
233230, 232syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 + 1) ∈ ℝ)
234230, 233ltnled 11382 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀))
235231, 234mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ (𝑀 + 1) ≤ 𝑀)
236 breq1 5122 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑀 + 1) → (𝑖𝑀 ↔ (𝑀 + 1) ≤ 𝑀))
237236notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑀 + 1) → (¬ 𝑖𝑀 ↔ ¬ (𝑀 + 1) ≤ 𝑀))
238235, 237syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑖 = (𝑀 + 1) → ¬ 𝑖𝑀))
239238con2d 134 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑖𝑀 → ¬ 𝑖 = (𝑀 + 1)))
240 elfzle2 13545 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
241239, 240impel 505 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ¬ 𝑖 = (𝑀 + 1))
242 iffalse 4509 . . . . . . . . . . . . . . . . . 18 𝑖 = (𝑀 + 1) → if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) = (𝐸𝑖))
243242oveq1d 7420 . . . . . . . . . . . . . . . . 17 𝑖 = (𝑀 + 1) → (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) = ((𝐸𝑖) + (𝑊 · 𝐷)))
244241, 243syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) = ((𝐸𝑖) + (𝑊 · 𝐷)))
245229, 244eqtrd 2770 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃𝑖) = ((𝐸𝑖) + (𝑊 · 𝐷)))
246245oveq2d 7421 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + (𝑃𝑖)) = (𝑇 + ((𝐸𝑖) + (𝑊 · 𝐷))))
24747nncnd 12256 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ ℂ)
248247adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑇 ∈ ℂ)
249101adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · 𝐷) ∈ ℂ)
250248, 80, 249add12d 11462 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + ((𝐸𝑖) + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))))
25145oveq1i 7415 . . . . . . . . . . . . . . . . . 18 (𝑇 + (𝑊 · 𝐷)) = ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷))
25216nncnd 12256 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ ℂ)
253120, 109subcld 11594 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑉𝐷) ∈ ℂ)
254113, 253addcld 11254 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + (𝑉𝐷)) ∈ ℂ)
255 ax-1cn 11187 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
256 subcl 11481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 + (𝑉𝐷)) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℂ)
257254, 255, 256sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℂ)
258105, 257mulcld 11255 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℂ)
259252, 258, 101addassd 11257 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷)) = (𝐵 + ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷))))
260105, 257, 109adddid 11259 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · (((𝐴 + (𝑉𝐷)) − 1) + 𝐷)) = ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷)))
261113, 253, 109addassd 11257 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐴 + (𝑉𝐷)) + 𝐷) = (𝐴 + ((𝑉𝐷) + 𝐷)))
262120, 109npcand 11598 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝑉𝐷) + 𝐷) = 𝑉)
263262oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐴 + ((𝑉𝐷) + 𝐷)) = (𝐴 + 𝑉))
264261, 263eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴 + (𝑉𝐷)) + 𝐷) = (𝐴 + 𝑉))
265264oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + (𝑉𝐷)) + 𝐷) − 1) = ((𝐴 + 𝑉) − 1))
266 1cnd 11230 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℂ)
267254, 109, 266addsubd 11615 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + (𝑉𝐷)) + 𝐷) − 1) = (((𝐴 + (𝑉𝐷)) − 1) + 𝐷))
268113, 120, 266addsubd 11615 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + 𝑉) − 1) = ((𝐴 − 1) + 𝑉))
269265, 267, 2683eqtr3d 2778 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐴 + (𝑉𝐷)) − 1) + 𝐷) = ((𝐴 − 1) + 𝑉))
270269oveq2d 7421 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · (((𝐴 + (𝑉𝐷)) − 1) + 𝐷)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
271260, 270eqtr3d 2772 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
272271oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵 + ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷))) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
273259, 272eqtrd 2770 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷)) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
274251, 273eqtrid 2782 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑇 + (𝑊 · 𝐷)) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
275274oveq2d 7421 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
276275adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
27788adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
27880, 77, 277addassd 11257 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐸𝑖) + 𝐵) + (𝑊 · ((𝐴 − 1) + 𝑉))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
27980, 77addcomd 11437 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + 𝐵) = (𝐵 + (𝐸𝑖)))
280279oveq1d 7420 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐸𝑖) + 𝐵) + (𝑊 · ((𝐴 − 1) + 𝑉))) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
281276, 278, 2803eqtr2d 2776 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
282246, 250, 2813eqtrd 2774 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + (𝑃𝑖)) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
283282, 245oveq12d 7423 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))))
284 cnvimass 6069 . . . . . . . . . . . . . . . . . . 19 (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ dom 𝐺
285284, 14fssdm 6725 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ (1...𝑊))
286285adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ (1...𝑊))
287 vdwapid1 16995 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ ∧ (𝐵 + (𝐸𝑖)) ∈ ℕ ∧ (𝐸𝑖) ∈ ℕ) → (𝐵 + (𝐸𝑖)) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
288160, 162, 79, 287syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
289153, 288sseldd 3959 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
290286, 289sseldd 3959 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (1...𝑊))
291 fvoveq1 7428 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐵 + (𝐸𝑖)) → (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
292 eqid 2735 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
293 fvex 6889 . . . . . . . . . . . . . . . . 17 (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))) ∈ V
294291, 292, 293fvmpt 6986 . . . . . . . . . . . . . . . 16 ((𝐵 + (𝐸𝑖)) ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
295290, 294syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
296 vdwapid1 16995 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
29710, 41, 42, 296syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
29843, 297sseldd 3959 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ (𝐹 “ {𝐺}))
299 fniniseg 7050 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn (1...𝑉) → (𝐴 ∈ (𝐹 “ {𝐺}) ↔ (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺)))
300146, 299syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 ∈ (𝐹 “ {𝐺}) ↔ (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺)))
301298, 300mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺))
302301simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴) = 𝐺)
303301simpld 494 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ (1...𝑉))
304 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1))
305304oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐴 → ((𝑥 − 1) + 𝑉) = ((𝐴 − 1) + 𝑉))
306305oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝐴 → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
307306oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝐴 → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))
308307fveq2d 6880 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝐴 → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
309308mpteq2dv 5215 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝐴 → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
310190mptex 7215 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))) ∈ V
311309, 40, 310fvmpt 6986 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ (1...𝑉) → (𝐹𝐴) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
312303, 311syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
313302, 312eqtr3d 2772 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
314313fveq1d 6878 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))))
315314adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))))
316282fveq2d 6880 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
317295, 315, 3163eqtr4rd 2781 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐺‘(𝐵 + (𝐸𝑖))))
318317sneqd 4613 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → {(𝐻‘(𝑇 + (𝑃𝑖)))} = {(𝐺‘(𝐵 + (𝐸𝑖)))})
319318imaeq2d 6047 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) = (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
320217, 283, 3193sstr4d 4014 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
321320ex 412 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (1...𝑀) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
322252adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ ℂ)
32388adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
324322, 323, 98addassd 11257 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) = (𝐵 + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
325127oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) = (𝐵 + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
326324, 325eqtr4d 2773 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) = (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
32738adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℕ)
32812adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℕ)
329 eluzfz1 13548 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ (ℤ‘1) → 1 ∈ (1...𝑀))
33052, 329syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ (1...𝑀))
331330ne0d 4317 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1...𝑀) ≠ ∅)
332 elfzuz3 13538 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 + (𝐸𝑖)) ∈ (1...𝑊) → 𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))))
333290, 332syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))))
33416nnzd 12615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐵 ∈ ℤ)
335 uzid 12867 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ𝐵))
336334, 335syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ (ℤ𝐵))
337336adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ (ℤ𝐵))
33879nnnn0d 12562 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℕ0)
339 uzaddcl 12920 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ (ℤ𝐵) ∧ (𝐸𝑖) ∈ ℕ0) → (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵))
340337, 338, 339syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵))
341 uztrn 12870 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))) ∧ (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵)) → 𝑊 ∈ (ℤ𝐵))
342333, 340, 341syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑊 ∈ (ℤ𝐵))
343 eluzle 12865 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑊 ∈ (ℤ𝐵) → 𝐵𝑊)
344342, 343syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵𝑊)
345344ralrimiva 3132 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑖 ∈ (1...𝑀)𝐵𝑊)
346 r19.2z 4470 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑀) ≠ ∅ ∧ ∀𝑖 ∈ (1...𝑀)𝐵𝑊) → ∃𝑖 ∈ (1...𝑀)𝐵𝑊)
347331, 345, 346syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∃𝑖 ∈ (1...𝑀)𝐵𝑊)
348 idd 24 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (1...𝑀) → (𝐵𝑊𝐵𝑊))
349348rexlimiv 3134 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑖 ∈ (1...𝑀)𝐵𝑊𝐵𝑊)
350347, 349syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵𝑊)
35112nnzd 12615 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑊 ∈ ℤ)
352 fznn 13609 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ ℤ → (𝐵 ∈ (1...𝑊) ↔ (𝐵 ∈ ℕ ∧ 𝐵𝑊)))
353351, 352syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 ∈ (1...𝑊) ↔ (𝐵 ∈ ℕ ∧ 𝐵𝑊)))
35416, 350, 353mpbir2and 713 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ (1...𝑊))
355354adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ (1...𝑊))
356327, 328, 151, 355vdwlem3 17003 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
357326, 356eqeltrd 2834 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))))
358 fvoveq1 7428 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
359 fvex 6889 . . . . . . . . . . . . . . . . . . . 20 (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) ∈ V
360358, 178, 359fvmpt 6986 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
361355, 360syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
362194fveq1d 6878 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐺𝐵) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵))
363326fveq2d 6880 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
364361, 362, 3633eqtr4rd 2781 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵))
365357, 364jca 511 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵)))
366 eleq1 2822 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ↔ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉)))))
367 fveqeq2 6885 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → ((𝐻𝑧) = (𝐺𝐵) ↔ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵)))
368366, 367anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → ((𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵)) ↔ (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵))))
369365, 368syl5ibrcom 247 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
370369rexlimdva 3141 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
37116, 87nnaddcld 12292 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
372 vdwapval 16993 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0 ∧ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ ∧ (𝑊 · 𝐷) ∈ ℕ) → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))))
373139, 371, 65, 372syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))))
374 fniniseg 7050 . . . . . . . . . . . . . . 15 (𝐻 Fn (1...(𝑊 · (2 · 𝑉))) → (𝑧 ∈ (𝐻 “ {(𝐺𝐵)}) ↔ (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
375212, 374syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ (𝐻 “ {(𝐺𝐵)}) ↔ (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
376370, 373, 3753imtr4d 294 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) → 𝑧 ∈ (𝐻 “ {(𝐺𝐵)})))
377376ssrdv 3964 . . . . . . . . . . . 12 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ⊆ (𝐻 “ {(𝐺𝐵)}))
37818peano2nnd 12257 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + 1) ∈ ℕ)
379378, 51eleqtrdi 2844 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
380 eluzfz2 13549 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) ∈ (ℤ‘1) → (𝑀 + 1) ∈ (1...(𝑀 + 1)))
381 iftrue 4506 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑀 + 1) → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) = 0)
382381oveq1d 7420 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑀 + 1) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) = (0 + (𝑊 · 𝐷)))
383 ovex 7438 . . . . . . . . . . . . . . . . . 18 (0 + (𝑊 · 𝐷)) ∈ V
384382, 46, 383fvmpt 6986 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) ∈ (1...(𝑀 + 1)) → (𝑃‘(𝑀 + 1)) = (0 + (𝑊 · 𝐷)))
385379, 380, 3843syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃‘(𝑀 + 1)) = (0 + (𝑊 · 𝐷)))
386101addlidd 11436 . . . . . . . . . . . . . . . 16 (𝜑 → (0 + (𝑊 · 𝐷)) = (𝑊 · 𝐷))
387385, 386eqtrd 2770 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃‘(𝑀 + 1)) = (𝑊 · 𝐷))
388387oveq2d 7421 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 + (𝑃‘(𝑀 + 1))) = (𝑇 + (𝑊 · 𝐷)))
389388, 274eqtrd 2770 . . . . . . . . . . . . 13 (𝜑 → (𝑇 + (𝑃‘(𝑀 + 1))) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
390389, 387oveq12d 7423 . . . . . . . . . . . 12 (𝜑 → ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)))
391 fvoveq1 7428 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
392 fvex 6889 . . . . . . . . . . . . . . . . 17 (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))) ∈ V
393391, 292, 392fvmpt 6986 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
394354, 393syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
395313fveq1d 6878 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝐵) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵))
396389fveq2d 6880 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
397394, 395, 3963eqtr4rd 2781 . . . . . . . . . . . . . 14 (𝜑 → (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) = (𝐺𝐵))
398397sneqd 4613 . . . . . . . . . . . . 13 (𝜑 → {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))} = {(𝐺𝐵)})
399398imaeq2d 6047 . . . . . . . . . . . 12 (𝜑 → (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}) = (𝐻 “ {(𝐺𝐵)}))
400377, 390, 3993sstr4d 4014 . . . . . . . . . . 11 (𝜑 → ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}))
401 fveq2 6876 . . . . . . . . . . . . . 14 (𝑖 = (𝑀 + 1) → (𝑃𝑖) = (𝑃‘(𝑀 + 1)))
402401oveq2d 7421 . . . . . . . . . . . . 13 (𝑖 = (𝑀 + 1) → (𝑇 + (𝑃𝑖)) = (𝑇 + (𝑃‘(𝑀 + 1))))
403402, 401oveq12d 7423 . . . . . . . . . . . 12 (𝑖 = (𝑀 + 1) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) = ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))))
404402fveq2d 6880 . . . . . . . . . . . . . 14 (𝑖 = (𝑀 + 1) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))))
405404sneqd 4613 . . . . . . . . . . . . 13 (𝑖 = (𝑀 + 1) → {(𝐻‘(𝑇 + (𝑃𝑖)))} = {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))})
406405imaeq2d 6047 . . . . . . . . . . . 12 (𝑖 = (𝑀 + 1) → (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}))
407403, 406sseq12d 3992 . . . . . . . . . . 11 (𝑖 = (𝑀 + 1) → (((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ↔ ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))})))
408400, 407syl5ibrcom 247 . . . . . . . . . 10 (𝜑 → (𝑖 = (𝑀 + 1) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
409321, 408jaod 859 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
41075, 409sylbid 240 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...(𝑀 + 1)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
411410ralrimiv 3131 . . . . . . 7 (𝜑 → ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
412411adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
413220rexeqdv 3306 . . . . . . . . . . . 12 (𝜑 → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ ∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))))
414 rexun 4171 . . . . . . . . . . . . 13 (∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ∨ ∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))))
415317eqeq2d 2746 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))))
416415rexbidva 3162 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))))
417 ovex 7438 . . . . . . . . . . . . . . . 16 (𝑀 + 1) ∈ V
418404eqeq2d 2746 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑀 + 1) → (𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))))
419417, 418rexsn 4658 . . . . . . . . . . . . . . 15 (∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))))
420397eqeq2d 2746 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) ↔ 𝑥 = (𝐺𝐵)))
421419, 420bitrid 283 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐺𝐵)))
422416, 421orbi12d 918 . . . . . . . . . . . . 13 (𝜑 → ((∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ∨ ∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
423414, 422bitrid 283 . . . . . . . . . . . 12 (𝜑 → (∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
424413, 423bitrd 279 . . . . . . . . . . 11 (𝜑 → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
425424adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
426425abbidv 2801 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → {𝑥 ∣ ∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))} = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))})
427 eqid 2735 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))
428427rnmpt 5937 . . . . . . . . 9 ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = {𝑥 ∣ ∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))}
4292rnmpt 5937 . . . . . . . . . . 11 ran 𝐽 = {𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))}
430 df-sn 4602 . . . . . . . . . . 11 {(𝐺𝐵)} = {𝑥𝑥 = (𝐺𝐵)}
431429, 430uneq12i 4141 . . . . . . . . . 10 (ran 𝐽 ∪ {(𝐺𝐵)}) = ({𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))} ∪ {𝑥𝑥 = (𝐺𝐵)})
432 unab 4283 . . . . . . . . . 10 ({𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))} ∪ {𝑥𝑥 = (𝐺𝐵)}) = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))}
433431, 432eqtri 2758 . . . . . . . . 9 (ran 𝐽 ∪ {(𝐺𝐵)}) = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))}
434426, 428, 4333eqtr4g 2795 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = (ran 𝐽 ∪ {(𝐺𝐵)}))
435434fveq2d 6880 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})))
436 fzfi 13990 . . . . . . . . . 10 (1...𝑀) ∈ Fin
437 dffn4 6796 . . . . . . . . . . 11 (𝐽 Fn (1...𝑀) ↔ 𝐽:(1...𝑀)–onto→ran 𝐽)
4383, 437mpbi 230 . . . . . . . . . 10 𝐽:(1...𝑀)–onto→ran 𝐽
439 fofi 9323 . . . . . . . . . 10 (((1...𝑀) ∈ Fin ∧ 𝐽:(1...𝑀)–onto→ran 𝐽) → ran 𝐽 ∈ Fin)
440436, 438, 439mp2an 692 . . . . . . . . 9 ran 𝐽 ∈ Fin
441440a1i 11 . . . . . . . 8 (𝜑 → ran 𝐽 ∈ Fin)
442 fvex 6889 . . . . . . . . 9 (𝐺𝐵) ∈ V
443 hashunsng 14410 . . . . . . . . 9 ((𝐺𝐵) ∈ V → ((ran 𝐽 ∈ Fin ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((♯‘ran 𝐽) + 1)))
444442, 443ax-mp 5 . . . . . . . 8 ((ran 𝐽 ∈ Fin ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((♯‘ran 𝐽) + 1))
445441, 444sylan 580 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((♯‘ran 𝐽) + 1))
44644adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘ran 𝐽) = 𝑀)
447446oveq1d 7420 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ((♯‘ran 𝐽) + 1) = (𝑀 + 1))
448435, 445, 4473eqtrd 2774 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))
449412, 448jca 511 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1)))
450 oveq1 7412 . . . . . . . . . 10 (𝑎 = 𝑇 → (𝑎 + (𝑑𝑖)) = (𝑇 + (𝑑𝑖)))
451450oveq1d 7420 . . . . . . . . 9 (𝑎 = 𝑇 → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
452 fvoveq1 7428 . . . . . . . . . . 11 (𝑎 = 𝑇 → (𝐻‘(𝑎 + (𝑑𝑖))) = (𝐻‘(𝑇 + (𝑑𝑖))))
453452sneqd 4613 . . . . . . . . . 10 (𝑎 = 𝑇 → {(𝐻‘(𝑎 + (𝑑𝑖)))} = {(𝐻‘(𝑇 + (𝑑𝑖)))})
454453imaeq2d 6047 . . . . . . . . 9 (𝑎 = 𝑇 → (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}))
455451, 454sseq12d 3992 . . . . . . . 8 (𝑎 = 𝑇 → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ↔ ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))})))
456455ralbidv 3163 . . . . . . 7 (𝑎 = 𝑇 → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))})))
457452mpteq2dv 5215 . . . . . . . . 9 (𝑎 = 𝑇 → (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))))
458457rneqd 5918 . . . . . . . 8 (𝑎 = 𝑇 → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖)))) = ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))))
459458fveqeq2d 6884 . . . . . . 7 (𝑎 = 𝑇 → ((♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1) ↔ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1)))
460456, 459anbi12d 632 . . . . . 6 (𝑎 = 𝑇 → ((∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1))))
461 fveq1 6875 . . . . . . . . . . 11 (𝑑 = 𝑃 → (𝑑𝑖) = (𝑃𝑖))
462461oveq2d 7421 . . . . . . . . . 10 (𝑑 = 𝑃 → (𝑇 + (𝑑𝑖)) = (𝑇 + (𝑃𝑖)))
463462, 461oveq12d 7423 . . . . . . . . 9 (𝑑 = 𝑃 → ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)))
464462fveq2d 6880 . . . . . . . . . . 11 (𝑑 = 𝑃 → (𝐻‘(𝑇 + (𝑑𝑖))) = (𝐻‘(𝑇 + (𝑃𝑖))))
465464sneqd 4613 . . . . . . . . . 10 (𝑑 = 𝑃 → {(𝐻‘(𝑇 + (𝑑𝑖)))} = {(𝐻‘(𝑇 + (𝑃𝑖)))})
466465imaeq2d 6047 . . . . . . . . 9 (𝑑 = 𝑃 → (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
467463, 466sseq12d 3992 . . . . . . . 8 (𝑑 = 𝑃 → (((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ↔ ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
468467ralbidv 3163 . . . . . . 7 (𝑑 = 𝑃 → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
469464mpteq2dv 5215 . . . . . . . . 9 (𝑑 = 𝑃 → (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))))
470469rneqd 5918 . . . . . . . 8 (𝑑 = 𝑃 → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))) = ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))))
471470fveqeq2d 6884 . . . . . . 7 (𝑑 = 𝑃 → ((♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1) ↔ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1)))
472468, 471anbi12d 632 . . . . . 6 (𝑑 = 𝑃 → ((∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))))
473460, 472rspc2ev 3614 . . . . 5 ((𝑇 ∈ ℕ ∧ 𝑃 ∈ (ℕ ↑m (1...(𝑀 + 1))) ∧ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)))
47448, 73, 449, 473syl3anc 1373 . . . 4 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)))
475 ovex 7438 . . . . 5 (1...(𝑊 · (2 · 𝑉))) ∈ V
47610adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐾 ∈ ℕ)
477476nnnn0d 12562 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐾 ∈ ℕ0)
47839adantr 480 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
47918adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑀 ∈ ℕ)
480479peano2nnd 12257 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (𝑀 + 1) ∈ ℕ)
481 eqid 2735 . . . . 5 (1...(𝑀 + 1)) = (1...(𝑀 + 1))
482475, 477, 478, 480, 481vdwpc 17000 . . . 4 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1))))
483474, 482mpbird 257 . . 3 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻)
484483orcd 873 . 2 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
48537, 484pm2.61dan 812 1 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  Vcvv 3459  cun 3924  wss 3926  c0 4308  ifcif 4500  {csn 4601  cop 4607   class class class wbr 5119  cmpt 5201  ccnv 5653  ran crn 5655  cima 5657   Fn wfn 6526  wf 6527  ontowfo 6529  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466  cn 12240  2c2 12295  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524  chash 14348  APcvdwa 16985   MonoAP cvdwm 16986   PolyAP cvdwp 16987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-hash 14349  df-vdwap 16988  df-vdwmc 16989  df-vdwpc 16990
This theorem is referenced by:  vdwlem7  17007
  Copyright terms: Public domain W3C validator