MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem6 Structured version   Visualization version   GIF version

Theorem vdwlem6 16312
Description: Lemma for vdw 16320. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
vdwlem6.b (𝜑𝐵 ∈ ℕ)
vdwlem6.e (𝜑𝐸:(1...𝑀)⟶ℕ)
vdwlem6.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
vdwlem6.j 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
vdwlem6.r (𝜑 → (♯‘ran 𝐽) = 𝑀)
vdwlem6.t 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
vdwlem6.p 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
Assertion
Ref Expression
vdwlem6 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑖,𝑗,𝑥,𝑦,𝐺   𝑖,𝐾,𝑗,𝑥,𝑦   𝑖,𝐽,𝑗,𝑥   𝑃,𝑖,𝑥   𝜑,𝑖,𝑗,𝑥,𝑦   𝑅,𝑖,𝑥,𝑦   𝐵,𝑖,𝑗,𝑥,𝑦   𝑖,𝐻,𝑥,𝑦   𝑖,𝑀,𝑗,𝑥,𝑦   𝐷,𝑗,𝑥,𝑦   𝑖,𝐸,𝑗,𝑥,𝑦   𝑖,𝑊,𝑗,𝑥,𝑦   𝑇,𝑖,𝑥   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖)   𝑃(𝑦,𝑗)   𝑅(𝑗)   𝑇(𝑦,𝑗)   𝐹(𝑥,𝑦,𝑖,𝑗)   𝐻(𝑗)   𝐽(𝑦)   𝑉(𝑖,𝑗)

Proof of Theorem vdwlem6
Dummy variables 𝑚 𝑛 𝑧 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6658 . . . . . . 7 (𝐺‘(𝐵 + (𝐸𝑖))) ∈ V
2 vdwlem6.j . . . . . . 7 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
31, 2fnmpti 6463 . . . . . 6 𝐽 Fn (1...𝑀)
4 fvelrnb 6701 . . . . . 6 (𝐽 Fn (1...𝑀) → ((𝐺𝐵) ∈ ran 𝐽 ↔ ∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵)))
53, 4ax-mp 5 . . . . 5 ((𝐺𝐵) ∈ ran 𝐽 ↔ ∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵))
6 vdwlem4.r . . . . . . . 8 (𝜑𝑅 ∈ Fin)
76adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑅 ∈ Fin)
8 vdwlem7.k . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ‘2))
9 eluz2nn 12272 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
108, 9syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℕ)
1110adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐾 ∈ ℕ)
12 vdwlem3.w . . . . . . . 8 (𝜑𝑊 ∈ ℕ)
1312adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑊 ∈ ℕ)
14 vdwlem7.g . . . . . . . 8 (𝜑𝐺:(1...𝑊)⟶𝑅)
1514adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐺:(1...𝑊)⟶𝑅)
16 vdwlem6.b . . . . . . . 8 (𝜑𝐵 ∈ ℕ)
1716adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐵 ∈ ℕ)
18 vdwlem7.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
1918adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑀 ∈ ℕ)
20 vdwlem6.e . . . . . . . 8 (𝜑𝐸:(1...𝑀)⟶ℕ)
2120adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐸:(1...𝑀)⟶ℕ)
22 vdwlem6.s . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
2322adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
24 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑚 ∈ (1...𝑀))
25 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐽𝑚) = (𝐺𝐵))
26 fveq2 6645 . . . . . . . . . . . 12 (𝑖 = 𝑚 → (𝐸𝑖) = (𝐸𝑚))
2726oveq2d 7151 . . . . . . . . . . 11 (𝑖 = 𝑚 → (𝐵 + (𝐸𝑖)) = (𝐵 + (𝐸𝑚)))
2827fveq2d 6649 . . . . . . . . . 10 (𝑖 = 𝑚 → (𝐺‘(𝐵 + (𝐸𝑖))) = (𝐺‘(𝐵 + (𝐸𝑚))))
29 fvex 6658 . . . . . . . . . 10 (𝐺‘(𝐵 + (𝐸𝑚))) ∈ V
3028, 2, 29fvmpt 6745 . . . . . . . . 9 (𝑚 ∈ (1...𝑀) → (𝐽𝑚) = (𝐺‘(𝐵 + (𝐸𝑚))))
3124, 30syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐽𝑚) = (𝐺‘(𝐵 + (𝐸𝑚))))
3225, 31eqtr3d 2835 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐺𝐵) = (𝐺‘(𝐵 + (𝐸𝑚))))
337, 11, 13, 15, 17, 19, 21, 23, 24, 32vdwlem1 16307 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐾 + 1) MonoAP 𝐺)
3433rexlimdvaa 3244 . . . . 5 (𝜑 → (∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵) → (𝐾 + 1) MonoAP 𝐺))
355, 34syl5bi 245 . . . 4 (𝜑 → ((𝐺𝐵) ∈ ran 𝐽 → (𝐾 + 1) MonoAP 𝐺))
3635imp 410 . . 3 ((𝜑 ∧ (𝐺𝐵) ∈ ran 𝐽) → (𝐾 + 1) MonoAP 𝐺)
3736olcd 871 . 2 ((𝜑 ∧ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
38 vdwlem3.v . . . . . . 7 (𝜑𝑉 ∈ ℕ)
39 vdwlem4.h . . . . . . 7 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
40 vdwlem4.f . . . . . . 7 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
41 vdwlem7.a . . . . . . 7 (𝜑𝐴 ∈ ℕ)
42 vdwlem7.d . . . . . . 7 (𝜑𝐷 ∈ ℕ)
43 vdwlem7.s . . . . . . 7 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
44 vdwlem6.r . . . . . . 7 (𝜑 → (♯‘ran 𝐽) = 𝑀)
45 vdwlem6.t . . . . . . 7 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
46 vdwlem6.p . . . . . . 7 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
4738, 12, 6, 39, 40, 18, 14, 8, 41, 42, 43, 16, 20, 22, 2, 44, 45, 46vdwlem5 16311 . . . . . 6 (𝜑𝑇 ∈ ℕ)
4847adantr 484 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑇 ∈ ℕ)
49 0nn0 11900 . . . . . . . . . 10 0 ∈ ℕ0
5049a1i 11 . . . . . . . . 9 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 = (𝑀 + 1)) → 0 ∈ ℕ0)
51 nnuz 12269 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
5218, 51eleqtrdi 2900 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (ℤ‘1))
5352adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑀 ∈ (ℤ‘1))
54 elfzp1 12952 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘1) → (𝑗 ∈ (1...(𝑀 + 1)) ↔ (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1))))
5553, 54syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (𝑗 ∈ (1...(𝑀 + 1)) ↔ (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1))))
5655biimpa 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1)))
5756ord 861 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (¬ 𝑗 ∈ (1...𝑀) → 𝑗 = (𝑀 + 1)))
5857con1d 147 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (¬ 𝑗 = (𝑀 + 1) → 𝑗 ∈ (1...𝑀)))
5958imp 410 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ ¬ 𝑗 = (𝑀 + 1)) → 𝑗 ∈ (1...𝑀))
6020ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → 𝐸:(1...𝑀)⟶ℕ)
6160ffvelrnda 6828 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 ∈ (1...𝑀)) → (𝐸𝑗) ∈ ℕ)
6261nnnn0d 11943 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 ∈ (1...𝑀)) → (𝐸𝑗) ∈ ℕ0)
6359, 62syldan 594 . . . . . . . . 9 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ ¬ 𝑗 = (𝑀 + 1)) → (𝐸𝑗) ∈ ℕ0)
6450, 63ifclda 4459 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) ∈ ℕ0)
6512, 42nnmulcld 11678 . . . . . . . . 9 (𝜑 → (𝑊 · 𝐷) ∈ ℕ)
6665ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (𝑊 · 𝐷) ∈ ℕ)
67 nn0nnaddcl 11916 . . . . . . . 8 ((if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) ∈ ℕ0 ∧ (𝑊 · 𝐷) ∈ ℕ) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) ∈ ℕ)
6864, 66, 67syl2anc 587 . . . . . . 7 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) ∈ ℕ)
6968, 46fmptd 6855 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑃:(1...(𝑀 + 1))⟶ℕ)
70 nnex 11631 . . . . . . 7 ℕ ∈ V
71 ovex 7168 . . . . . . 7 (1...(𝑀 + 1)) ∈ V
7270, 71elmap 8418 . . . . . 6 (𝑃 ∈ (ℕ ↑m (1...(𝑀 + 1))) ↔ 𝑃:(1...(𝑀 + 1))⟶ℕ)
7369, 72sylibr 237 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑃 ∈ (ℕ ↑m (1...(𝑀 + 1))))
74 elfzp1 12952 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘1) → (𝑖 ∈ (1...(𝑀 + 1)) ↔ (𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1))))
7552, 74syl 17 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...(𝑀 + 1)) ↔ (𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1))))
7616adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ ℕ)
7776nncnd 11641 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ ℂ)
7877adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ ℂ)
7920ffvelrnda 6828 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℕ)
8079nncnd 11641 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℂ)
8180adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐸𝑖) ∈ ℂ)
8278, 81addcld 10649 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝐸𝑖)) ∈ ℂ)
83 nnm1nn0 11926 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
8441, 83syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 − 1) ∈ ℕ0)
85 nn0nnaddcl 11916 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝐴 − 1) + 𝑉) ∈ ℕ)
8684, 38, 85syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℕ)
8712, 86nnmulcld 11678 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
8887nncnd 11641 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
8988ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
90 elfznn0 12995 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
9190adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
9291nn0cnd 11945 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
9392adantlr 714 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
9493, 81mulcld 10650 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝐸𝑖)) ∈ ℂ)
9565nnnn0d 11943 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑊 · 𝐷) ∈ ℕ0)
9695adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · 𝐷) ∈ ℕ0)
9791, 96nn0mulcld 11948 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℕ0)
9897nn0cnd 11945 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℂ)
9998adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℂ)
10082, 89, 94, 99add4d 10857 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
10165nncnd 11641 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑊 · 𝐷) ∈ ℂ)
102101ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · 𝐷) ∈ ℂ)
10393, 81, 102adddid 10654 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))) = ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷))))
104103oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷)))))
10512nncnd 11641 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑊 ∈ ℂ)
106105adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℂ)
10786nncnd 11641 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℂ)
108107adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 − 1) + 𝑉) ∈ ℂ)
10942nncnd 11641 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐷 ∈ ℂ)
110109adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐷 ∈ ℂ)
11192, 110mulcld 10650 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ)
112106, 108, 111adddid 10654 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷))) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑊 · (𝑚 · 𝐷))))
11341nncnd 11641 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐴 ∈ ℂ)
114113adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈ ℂ)
115 1cnd 10625 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈ ℂ)
116114, 111, 115addsubd 11007 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) − 1) = ((𝐴 − 1) + (𝑚 · 𝐷)))
117116oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉) = (((𝐴 − 1) + (𝑚 · 𝐷)) + 𝑉))
11884nn0cnd 11945 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 − 1) ∈ ℂ)
119118adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 − 1) ∈ ℂ)
12038nncnd 11641 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑉 ∈ ℂ)
121120adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℂ)
122119, 111, 121add32d 10856 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 − 1) + (𝑚 · 𝐷)) + 𝑉) = (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷)))
123117, 122eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉) = (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷)))
124123oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = (𝑊 · (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷))))
12592, 106, 110mul12d 10838 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) = (𝑊 · (𝑚 · 𝐷)))
126125oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑊 · (𝑚 · 𝐷))))
127112, 124, 1263eqtr4d 2843 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))))
128127adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))))
129128oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
130100, 104, 1293eqtr4d 2843 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
13138ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℕ)
13212ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℕ)
13343adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
134 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))
135 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑚 → (𝑛 · 𝐷) = (𝑚 · 𝐷))
136135oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝑚 · 𝐷)))
137136rspceeqv 3586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
138134, 137mpan2 690 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
13910nnnn0d 11943 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐾 ∈ ℕ0)
140 vdwapval 16299 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
141139, 41, 42, 140syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
142141biimpar 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
143138, 142sylan2 595 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
144133, 143sseldd 3916 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}))
14538, 12, 6, 39, 40vdwlem4 16310 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
146145ffnd 6488 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 Fn (1...𝑉))
147 fniniseg 6807 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 Fn (1...𝑉) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)))
148146, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)))
149148biimpa 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺})) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺))
150144, 149syldan 594 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺))
151150simpld 498 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉))
152151adantlr 714 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉))
15322r19.21bi 3173 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
154153adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
155 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))
156 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑛 · (𝐸𝑖)) = (𝑚 · (𝐸𝑖)))
157156oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))))
158157rspceeqv 3586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) → ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))))
159155, 158mpan2 690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))))
16010adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
161160nnnn0d 11943 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ0)
16276, 79nnaddcld 11677 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ ℕ)
163 vdwapval 16299 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0 ∧ (𝐵 + (𝐸𝑖)) ∈ ℕ ∧ (𝐸𝑖) ∈ ℕ) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))))
164161, 162, 79, 163syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))))
165164biimpar 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (1...𝑀)) ∧ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
166159, 165sylan2 595 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
167154, 166sseldd 3916 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
16814ffnd 6488 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 Fn (1...𝑊))
169168adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐺 Fn (1...𝑊))
170 fniniseg 6807 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 Fn (1...𝑊) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
171169, 170syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
172171biimpa 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))})) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
173167, 172syldan 594 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
174173simpld 498 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊))
175131, 132, 152, 174vdwlem3 16309 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
176130, 175eqeltrd 2890 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))))
177 fvoveq1 7158 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) → (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
178 eqid 2798 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
179 fvex 6658 . . . . . . . . . . . . . . . . . . . 20 (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) ∈ V
180177, 178, 179fvmpt 6745 . . . . . . . . . . . . . . . . . . 19 (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
181174, 180syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
182173simprd 499 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))
183150simprd 499 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)
184 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑥 − 1) = ((𝐴 + (𝑚 · 𝐷)) − 1))
185184oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → ((𝑥 − 1) + 𝑉) = (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))
186185oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))
187186oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
188187fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
189188mpteq2dv 5126 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
190 ovex 7168 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1...𝑊) ∈ V
191190mptex 6963 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))) ∈ V
192189, 40, 191fvmpt 6745 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
193151, 192syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
194183, 193eqtr3d 2835 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
195194adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
196195fveq1d 6647 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))))
197182, 196eqtr3d 2835 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))))
198130fveq2d 6649 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
199181, 197, 1983eqtr4rd 2844 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖))))
200176, 199jca 515 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
201 eleq1 2877 . . . . . . . . . . . . . . . . 17 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉)))))
202 fveqeq2 6654 . . . . . . . . . . . . . . . . 17 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → ((𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))) ↔ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
203201, 202anbi12d 633 . . . . . . . . . . . . . . . 16 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → ((𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖)))) ↔ ((((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
204200, 203syl5ibrcom 250 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
205204rexlimdva 3243 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
20687adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
207162, 206nnaddcld 11677 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
20865adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · 𝐷) ∈ ℕ)
20979, 208nnaddcld 11677 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑊 · 𝐷)) ∈ ℕ)
210 vdwapval 16299 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0 ∧ ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ ∧ ((𝐸𝑖) + (𝑊 · 𝐷)) ∈ ℕ) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))))
211161, 207, 209, 210syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))))
21239ffnd 6488 . . . . . . . . . . . . . . . 16 (𝜑𝐻 Fn (1...(𝑊 · (2 · 𝑉))))
213212adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐻 Fn (1...(𝑊 · (2 · 𝑉))))
214 fniniseg 6807 . . . . . . . . . . . . . . 15 (𝐻 Fn (1...(𝑊 · (2 · 𝑉))) → (𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
215213, 214syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
216205, 211, 2153imtr4d 297 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) → 𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))})))
217216ssrdv 3921 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ⊆ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
218 ssun1 4099 . . . . . . . . . . . . . . . . . . 19 (1...𝑀) ⊆ ((1...𝑀) ∪ {(𝑀 + 1)})
219 fzsuc 12949 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (ℤ‘1) → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}))
22052, 219syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}))
221218, 220sseqtrrid 3968 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...𝑀) ⊆ (1...(𝑀 + 1)))
222221sselda 3915 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...(𝑀 + 1)))
223 eqeq1 2802 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝑗 = (𝑀 + 1) ↔ 𝑖 = (𝑀 + 1)))
224 fveq2 6645 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝐸𝑗) = (𝐸𝑖))
225223, 224ifbieq2d 4450 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) = if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)))
226225oveq1d 7150 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
227 ovex 7168 . . . . . . . . . . . . . . . . . 18 (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) ∈ V
228226, 46, 227fvmpt 6745 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(𝑀 + 1)) → (𝑃𝑖) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
229222, 228syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃𝑖) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
23018nnred 11640 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑀 ∈ ℝ)
231230ltp1d 11559 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 < (𝑀 + 1))
232 peano2re 10802 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
233230, 232syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 + 1) ∈ ℝ)
234230, 233ltnled 10776 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀))
235231, 234mpbid 235 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ (𝑀 + 1) ≤ 𝑀)
236 breq1 5033 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑀 + 1) → (𝑖𝑀 ↔ (𝑀 + 1) ≤ 𝑀))
237236notbid 321 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑀 + 1) → (¬ 𝑖𝑀 ↔ ¬ (𝑀 + 1) ≤ 𝑀))
238235, 237syl5ibrcom 250 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑖 = (𝑀 + 1) → ¬ 𝑖𝑀))
239238con2d 136 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑖𝑀 → ¬ 𝑖 = (𝑀 + 1)))
240 elfzle2 12906 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
241239, 240impel 509 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ¬ 𝑖 = (𝑀 + 1))
242 iffalse 4434 . . . . . . . . . . . . . . . . . 18 𝑖 = (𝑀 + 1) → if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) = (𝐸𝑖))
243242oveq1d 7150 . . . . . . . . . . . . . . . . 17 𝑖 = (𝑀 + 1) → (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) = ((𝐸𝑖) + (𝑊 · 𝐷)))
244241, 243syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) = ((𝐸𝑖) + (𝑊 · 𝐷)))
245229, 244eqtrd 2833 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃𝑖) = ((𝐸𝑖) + (𝑊 · 𝐷)))
246245oveq2d 7151 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + (𝑃𝑖)) = (𝑇 + ((𝐸𝑖) + (𝑊 · 𝐷))))
24747nncnd 11641 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ ℂ)
248247adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑇 ∈ ℂ)
249101adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · 𝐷) ∈ ℂ)
250248, 80, 249add12d 10855 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + ((𝐸𝑖) + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))))
25145oveq1i 7145 . . . . . . . . . . . . . . . . . 18 (𝑇 + (𝑊 · 𝐷)) = ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷))
25216nncnd 11641 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ ℂ)
253120, 109subcld 10986 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑉𝐷) ∈ ℂ)
254113, 253addcld 10649 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + (𝑉𝐷)) ∈ ℂ)
255 ax-1cn 10584 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
256 subcl 10874 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 + (𝑉𝐷)) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℂ)
257254, 255, 256sylancl 589 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℂ)
258105, 257mulcld 10650 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℂ)
259252, 258, 101addassd 10652 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷)) = (𝐵 + ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷))))
260105, 257, 109adddid 10654 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · (((𝐴 + (𝑉𝐷)) − 1) + 𝐷)) = ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷)))
261113, 253, 109addassd 10652 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐴 + (𝑉𝐷)) + 𝐷) = (𝐴 + ((𝑉𝐷) + 𝐷)))
262120, 109npcand 10990 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝑉𝐷) + 𝐷) = 𝑉)
263262oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐴 + ((𝑉𝐷) + 𝐷)) = (𝐴 + 𝑉))
264261, 263eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴 + (𝑉𝐷)) + 𝐷) = (𝐴 + 𝑉))
265264oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + (𝑉𝐷)) + 𝐷) − 1) = ((𝐴 + 𝑉) − 1))
266 1cnd 10625 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℂ)
267254, 109, 266addsubd 11007 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + (𝑉𝐷)) + 𝐷) − 1) = (((𝐴 + (𝑉𝐷)) − 1) + 𝐷))
268113, 120, 266addsubd 11007 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + 𝑉) − 1) = ((𝐴 − 1) + 𝑉))
269265, 267, 2683eqtr3d 2841 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐴 + (𝑉𝐷)) − 1) + 𝐷) = ((𝐴 − 1) + 𝑉))
270269oveq2d 7151 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · (((𝐴 + (𝑉𝐷)) − 1) + 𝐷)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
271260, 270eqtr3d 2835 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
272271oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵 + ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷))) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
273259, 272eqtrd 2833 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷)) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
274251, 273syl5eq 2845 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑇 + (𝑊 · 𝐷)) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
275274oveq2d 7151 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
276275adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
27788adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
27880, 77, 277addassd 10652 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐸𝑖) + 𝐵) + (𝑊 · ((𝐴 − 1) + 𝑉))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
27980, 77addcomd 10831 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + 𝐵) = (𝐵 + (𝐸𝑖)))
280279oveq1d 7150 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐸𝑖) + 𝐵) + (𝑊 · ((𝐴 − 1) + 𝑉))) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
281276, 278, 2803eqtr2d 2839 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
282246, 250, 2813eqtrd 2837 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + (𝑃𝑖)) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
283282, 245oveq12d 7153 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))))
284 cnvimass 5916 . . . . . . . . . . . . . . . . . . 19 (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ dom 𝐺
285284, 14fssdm 6504 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ (1...𝑊))
286285adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ (1...𝑊))
287 vdwapid1 16301 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ ∧ (𝐵 + (𝐸𝑖)) ∈ ℕ ∧ (𝐸𝑖) ∈ ℕ) → (𝐵 + (𝐸𝑖)) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
288160, 162, 79, 287syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
289153, 288sseldd 3916 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
290286, 289sseldd 3916 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (1...𝑊))
291 fvoveq1 7158 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐵 + (𝐸𝑖)) → (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
292 eqid 2798 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
293 fvex 6658 . . . . . . . . . . . . . . . . 17 (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))) ∈ V
294291, 292, 293fvmpt 6745 . . . . . . . . . . . . . . . 16 ((𝐵 + (𝐸𝑖)) ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
295290, 294syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
296 vdwapid1 16301 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
29710, 41, 42, 296syl3anc 1368 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
29843, 297sseldd 3916 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ (𝐹 “ {𝐺}))
299 fniniseg 6807 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn (1...𝑉) → (𝐴 ∈ (𝐹 “ {𝐺}) ↔ (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺)))
300146, 299syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 ∈ (𝐹 “ {𝐺}) ↔ (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺)))
301298, 300mpbid 235 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺))
302301simprd 499 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴) = 𝐺)
303301simpld 498 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ (1...𝑉))
304 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1))
305304oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐴 → ((𝑥 − 1) + 𝑉) = ((𝐴 − 1) + 𝑉))
306305oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝐴 → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
307306oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝐴 → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))
308307fveq2d 6649 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝐴 → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
309308mpteq2dv 5126 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝐴 → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
310190mptex 6963 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))) ∈ V
311309, 40, 310fvmpt 6745 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ (1...𝑉) → (𝐹𝐴) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
312303, 311syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
313302, 312eqtr3d 2835 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
314313fveq1d 6647 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))))
315314adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))))
316282fveq2d 6649 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
317295, 315, 3163eqtr4rd 2844 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐺‘(𝐵 + (𝐸𝑖))))
318317sneqd 4537 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → {(𝐻‘(𝑇 + (𝑃𝑖)))} = {(𝐺‘(𝐵 + (𝐸𝑖)))})
319318imaeq2d 5896 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) = (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
320217, 283, 3193sstr4d 3962 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
321320ex 416 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (1...𝑀) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
322252adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ ℂ)
32388adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
324322, 323, 98addassd 10652 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) = (𝐵 + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
325127oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) = (𝐵 + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
326324, 325eqtr4d 2836 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) = (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
32738adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℕ)
32812adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℕ)
329 eluzfz1 12909 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ (ℤ‘1) → 1 ∈ (1...𝑀))
33052, 329syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ (1...𝑀))
331330ne0d 4251 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1...𝑀) ≠ ∅)
332 elfzuz3 12899 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 + (𝐸𝑖)) ∈ (1...𝑊) → 𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))))
333290, 332syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))))
33416nnzd 12074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐵 ∈ ℤ)
335 uzid 12246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ𝐵))
336334, 335syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ (ℤ𝐵))
337336adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ (ℤ𝐵))
33879nnnn0d 11943 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℕ0)
339 uzaddcl 12292 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ (ℤ𝐵) ∧ (𝐸𝑖) ∈ ℕ0) → (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵))
340337, 338, 339syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵))
341 uztrn 12249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))) ∧ (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵)) → 𝑊 ∈ (ℤ𝐵))
342333, 340, 341syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑊 ∈ (ℤ𝐵))
343 eluzle 12244 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑊 ∈ (ℤ𝐵) → 𝐵𝑊)
344342, 343syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵𝑊)
345344ralrimiva 3149 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑖 ∈ (1...𝑀)𝐵𝑊)
346 r19.2z 4398 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑀) ≠ ∅ ∧ ∀𝑖 ∈ (1...𝑀)𝐵𝑊) → ∃𝑖 ∈ (1...𝑀)𝐵𝑊)
347331, 345, 346syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∃𝑖 ∈ (1...𝑀)𝐵𝑊)
348 idd 24 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (1...𝑀) → (𝐵𝑊𝐵𝑊))
349348rexlimiv 3239 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑖 ∈ (1...𝑀)𝐵𝑊𝐵𝑊)
350347, 349syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵𝑊)
35112nnzd 12074 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑊 ∈ ℤ)
352 fznn 12970 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ ℤ → (𝐵 ∈ (1...𝑊) ↔ (𝐵 ∈ ℕ ∧ 𝐵𝑊)))
353351, 352syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 ∈ (1...𝑊) ↔ (𝐵 ∈ ℕ ∧ 𝐵𝑊)))
35416, 350, 353mpbir2and 712 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ (1...𝑊))
355354adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ (1...𝑊))
356327, 328, 151, 355vdwlem3 16309 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
357326, 356eqeltrd 2890 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))))
358 fvoveq1 7158 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
359 fvex 6658 . . . . . . . . . . . . . . . . . . . 20 (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) ∈ V
360358, 178, 359fvmpt 6745 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
361355, 360syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
362194fveq1d 6647 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐺𝐵) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵))
363326fveq2d 6649 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
364361, 362, 3633eqtr4rd 2844 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵))
365357, 364jca 515 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵)))
366 eleq1 2877 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ↔ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉)))))
367 fveqeq2 6654 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → ((𝐻𝑧) = (𝐺𝐵) ↔ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵)))
368366, 367anbi12d 633 . . . . . . . . . . . . . . . 16 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → ((𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵)) ↔ (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵))))
369365, 368syl5ibrcom 250 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
370369rexlimdva 3243 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
37116, 87nnaddcld 11677 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
372 vdwapval 16299 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0 ∧ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ ∧ (𝑊 · 𝐷) ∈ ℕ) → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))))
373139, 371, 65, 372syl3anc 1368 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))))
374 fniniseg 6807 . . . . . . . . . . . . . . 15 (𝐻 Fn (1...(𝑊 · (2 · 𝑉))) → (𝑧 ∈ (𝐻 “ {(𝐺𝐵)}) ↔ (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
375212, 374syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ (𝐻 “ {(𝐺𝐵)}) ↔ (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
376370, 373, 3753imtr4d 297 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) → 𝑧 ∈ (𝐻 “ {(𝐺𝐵)})))
377376ssrdv 3921 . . . . . . . . . . . 12 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ⊆ (𝐻 “ {(𝐺𝐵)}))
37818peano2nnd 11642 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + 1) ∈ ℕ)
379378, 51eleqtrdi 2900 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
380 eluzfz2 12910 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) ∈ (ℤ‘1) → (𝑀 + 1) ∈ (1...(𝑀 + 1)))
381 iftrue 4431 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑀 + 1) → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) = 0)
382381oveq1d 7150 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑀 + 1) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) = (0 + (𝑊 · 𝐷)))
383 ovex 7168 . . . . . . . . . . . . . . . . . 18 (0 + (𝑊 · 𝐷)) ∈ V
384382, 46, 383fvmpt 6745 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) ∈ (1...(𝑀 + 1)) → (𝑃‘(𝑀 + 1)) = (0 + (𝑊 · 𝐷)))
385379, 380, 3843syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃‘(𝑀 + 1)) = (0 + (𝑊 · 𝐷)))
386101addid2d 10830 . . . . . . . . . . . . . . . 16 (𝜑 → (0 + (𝑊 · 𝐷)) = (𝑊 · 𝐷))
387385, 386eqtrd 2833 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃‘(𝑀 + 1)) = (𝑊 · 𝐷))
388387oveq2d 7151 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 + (𝑃‘(𝑀 + 1))) = (𝑇 + (𝑊 · 𝐷)))
389388, 274eqtrd 2833 . . . . . . . . . . . . 13 (𝜑 → (𝑇 + (𝑃‘(𝑀 + 1))) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
390389, 387oveq12d 7153 . . . . . . . . . . . 12 (𝜑 → ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)))
391 fvoveq1 7158 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
392 fvex 6658 . . . . . . . . . . . . . . . . 17 (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))) ∈ V
393391, 292, 392fvmpt 6745 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
394354, 393syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
395313fveq1d 6647 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝐵) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵))
396389fveq2d 6649 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
397394, 395, 3963eqtr4rd 2844 . . . . . . . . . . . . . 14 (𝜑 → (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) = (𝐺𝐵))
398397sneqd 4537 . . . . . . . . . . . . 13 (𝜑 → {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))} = {(𝐺𝐵)})
399398imaeq2d 5896 . . . . . . . . . . . 12 (𝜑 → (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}) = (𝐻 “ {(𝐺𝐵)}))
400377, 390, 3993sstr4d 3962 . . . . . . . . . . 11 (𝜑 → ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}))
401 fveq2 6645 . . . . . . . . . . . . . 14 (𝑖 = (𝑀 + 1) → (𝑃𝑖) = (𝑃‘(𝑀 + 1)))
402401oveq2d 7151 . . . . . . . . . . . . 13 (𝑖 = (𝑀 + 1) → (𝑇 + (𝑃𝑖)) = (𝑇 + (𝑃‘(𝑀 + 1))))
403402, 401oveq12d 7153 . . . . . . . . . . . 12 (𝑖 = (𝑀 + 1) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) = ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))))
404402fveq2d 6649 . . . . . . . . . . . . . 14 (𝑖 = (𝑀 + 1) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))))
405404sneqd 4537 . . . . . . . . . . . . 13 (𝑖 = (𝑀 + 1) → {(𝐻‘(𝑇 + (𝑃𝑖)))} = {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))})
406405imaeq2d 5896 . . . . . . . . . . . 12 (𝑖 = (𝑀 + 1) → (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}))
407403, 406sseq12d 3948 . . . . . . . . . . 11 (𝑖 = (𝑀 + 1) → (((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ↔ ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))})))
408400, 407syl5ibrcom 250 . . . . . . . . . 10 (𝜑 → (𝑖 = (𝑀 + 1) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
409321, 408jaod 856 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
41075, 409sylbid 243 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...(𝑀 + 1)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
411410ralrimiv 3148 . . . . . . 7 (𝜑 → ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
412411adantr 484 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
413220rexeqdv 3365 . . . . . . . . . . . 12 (𝜑 → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ ∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))))
414 rexun 4117 . . . . . . . . . . . . 13 (∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ∨ ∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))))
415317eqeq2d 2809 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))))
416415rexbidva 3255 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))))
417 ovex 7168 . . . . . . . . . . . . . . . 16 (𝑀 + 1) ∈ V
418404eqeq2d 2809 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑀 + 1) → (𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))))
419417, 418rexsn 4580 . . . . . . . . . . . . . . 15 (∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))))
420397eqeq2d 2809 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) ↔ 𝑥 = (𝐺𝐵)))
421419, 420syl5bb 286 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐺𝐵)))
422416, 421orbi12d 916 . . . . . . . . . . . . 13 (𝜑 → ((∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ∨ ∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
423414, 422syl5bb 286 . . . . . . . . . . . 12 (𝜑 → (∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
424413, 423bitrd 282 . . . . . . . . . . 11 (𝜑 → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
425424adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
426425abbidv 2862 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → {𝑥 ∣ ∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))} = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))})
427 eqid 2798 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))
428427rnmpt 5791 . . . . . . . . 9 ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = {𝑥 ∣ ∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))}
4292rnmpt 5791 . . . . . . . . . . 11 ran 𝐽 = {𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))}
430 df-sn 4526 . . . . . . . . . . 11 {(𝐺𝐵)} = {𝑥𝑥 = (𝐺𝐵)}
431429, 430uneq12i 4088 . . . . . . . . . 10 (ran 𝐽 ∪ {(𝐺𝐵)}) = ({𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))} ∪ {𝑥𝑥 = (𝐺𝐵)})
432 unab 4222 . . . . . . . . . 10 ({𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))} ∪ {𝑥𝑥 = (𝐺𝐵)}) = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))}
433431, 432eqtri 2821 . . . . . . . . 9 (ran 𝐽 ∪ {(𝐺𝐵)}) = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))}
434426, 428, 4333eqtr4g 2858 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = (ran 𝐽 ∪ {(𝐺𝐵)}))
435434fveq2d 6649 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})))
436 fzfi 13335 . . . . . . . . . 10 (1...𝑀) ∈ Fin
437 dffn4 6571 . . . . . . . . . . 11 (𝐽 Fn (1...𝑀) ↔ 𝐽:(1...𝑀)–onto→ran 𝐽)
4383, 437mpbi 233 . . . . . . . . . 10 𝐽:(1...𝑀)–onto→ran 𝐽
439 fofi 8794 . . . . . . . . . 10 (((1...𝑀) ∈ Fin ∧ 𝐽:(1...𝑀)–onto→ran 𝐽) → ran 𝐽 ∈ Fin)
440436, 438, 439mp2an 691 . . . . . . . . 9 ran 𝐽 ∈ Fin
441440a1i 11 . . . . . . . 8 (𝜑 → ran 𝐽 ∈ Fin)
442 fvex 6658 . . . . . . . . 9 (𝐺𝐵) ∈ V
443 hashunsng 13749 . . . . . . . . 9 ((𝐺𝐵) ∈ V → ((ran 𝐽 ∈ Fin ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((♯‘ran 𝐽) + 1)))
444442, 443ax-mp 5 . . . . . . . 8 ((ran 𝐽 ∈ Fin ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((♯‘ran 𝐽) + 1))
445441, 444sylan 583 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((♯‘ran 𝐽) + 1))
44644adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘ran 𝐽) = 𝑀)
447446oveq1d 7150 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ((♯‘ran 𝐽) + 1) = (𝑀 + 1))
448435, 445, 4473eqtrd 2837 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))
449412, 448jca 515 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1)))
450 oveq1 7142 . . . . . . . . . 10 (𝑎 = 𝑇 → (𝑎 + (𝑑𝑖)) = (𝑇 + (𝑑𝑖)))
451450oveq1d 7150 . . . . . . . . 9 (𝑎 = 𝑇 → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
452 fvoveq1 7158 . . . . . . . . . . 11 (𝑎 = 𝑇 → (𝐻‘(𝑎 + (𝑑𝑖))) = (𝐻‘(𝑇 + (𝑑𝑖))))
453452sneqd 4537 . . . . . . . . . 10 (𝑎 = 𝑇 → {(𝐻‘(𝑎 + (𝑑𝑖)))} = {(𝐻‘(𝑇 + (𝑑𝑖)))})
454453imaeq2d 5896 . . . . . . . . 9 (𝑎 = 𝑇 → (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}))
455451, 454sseq12d 3948 . . . . . . . 8 (𝑎 = 𝑇 → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ↔ ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))})))
456455ralbidv 3162 . . . . . . 7 (𝑎 = 𝑇 → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))})))
457452mpteq2dv 5126 . . . . . . . . 9 (𝑎 = 𝑇 → (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))))
458457rneqd 5772 . . . . . . . 8 (𝑎 = 𝑇 → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖)))) = ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))))
459458fveqeq2d 6653 . . . . . . 7 (𝑎 = 𝑇 → ((♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1) ↔ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1)))
460456, 459anbi12d 633 . . . . . 6 (𝑎 = 𝑇 → ((∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1))))
461 fveq1 6644 . . . . . . . . . . 11 (𝑑 = 𝑃 → (𝑑𝑖) = (𝑃𝑖))
462461oveq2d 7151 . . . . . . . . . 10 (𝑑 = 𝑃 → (𝑇 + (𝑑𝑖)) = (𝑇 + (𝑃𝑖)))
463462, 461oveq12d 7153 . . . . . . . . 9 (𝑑 = 𝑃 → ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)))
464462fveq2d 6649 . . . . . . . . . . 11 (𝑑 = 𝑃 → (𝐻‘(𝑇 + (𝑑𝑖))) = (𝐻‘(𝑇 + (𝑃𝑖))))
465464sneqd 4537 . . . . . . . . . 10 (𝑑 = 𝑃 → {(𝐻‘(𝑇 + (𝑑𝑖)))} = {(𝐻‘(𝑇 + (𝑃𝑖)))})
466465imaeq2d 5896 . . . . . . . . 9 (𝑑 = 𝑃 → (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
467463, 466sseq12d 3948 . . . . . . . 8 (𝑑 = 𝑃 → (((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ↔ ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
468467ralbidv 3162 . . . . . . 7 (𝑑 = 𝑃 → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
469464mpteq2dv 5126 . . . . . . . . 9 (𝑑 = 𝑃 → (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))))
470469rneqd 5772 . . . . . . . 8 (𝑑 = 𝑃 → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))) = ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))))
471470fveqeq2d 6653 . . . . . . 7 (𝑑 = 𝑃 → ((♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1) ↔ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1)))
472468, 471anbi12d 633 . . . . . 6 (𝑑 = 𝑃 → ((∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))))
473460, 472rspc2ev 3583 . . . . 5 ((𝑇 ∈ ℕ ∧ 𝑃 ∈ (ℕ ↑m (1...(𝑀 + 1))) ∧ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)))
47448, 73, 449, 473syl3anc 1368 . . . 4 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)))
475 ovex 7168 . . . . 5 (1...(𝑊 · (2 · 𝑉))) ∈ V
47610adantr 484 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐾 ∈ ℕ)
477476nnnn0d 11943 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐾 ∈ ℕ0)
47839adantr 484 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
47918adantr 484 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑀 ∈ ℕ)
480479peano2nnd 11642 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (𝑀 + 1) ∈ ℕ)
481 eqid 2798 . . . . 5 (1...(𝑀 + 1)) = (1...(𝑀 + 1))
482475, 477, 478, 480, 481vdwpc 16306 . . . 4 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1))))
483474, 482mpbird 260 . . 3 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻)
484483orcd 870 . 2 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
48537, 484pm2.61dan 812 1 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  {cab 2776  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cun 3879  wss 3881  c0 4243  ifcif 4425  {csn 4525  cop 4531   class class class wbr 5030  cmpt 5110  ccnv 5518  ran crn 5520  cima 5522   Fn wfn 6319  wf 6320  ontowfo 6322  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  chash 13686  APcvdwa 16291   MonoAP cvdwm 16292   PolyAP cvdwp 16293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-hash 13687  df-vdwap 16294  df-vdwmc 16295  df-vdwpc 16296
This theorem is referenced by:  vdwlem7  16313
  Copyright terms: Public domain W3C validator