MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdun Structured version   Visualization version   GIF version

Theorem vtxdun 29514
Description: The degree of a vertex in the union of two graphs on the same vertex set is the sum of the degrees of the vertex in each graph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 19-Feb-2021.)
Hypotheses
Ref Expression
vtxdun.i 𝐼 = (iEdg‘𝐺)
vtxdun.j 𝐽 = (iEdg‘𝐻)
vtxdun.vg 𝑉 = (Vtx‘𝐺)
vtxdun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
vtxdun.vu (𝜑 → (Vtx‘𝑈) = 𝑉)
vtxdun.d (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅)
vtxdun.fi (𝜑 → Fun 𝐼)
vtxdun.fj (𝜑 → Fun 𝐽)
vtxdun.n (𝜑𝑁𝑉)
vtxdun.u (𝜑 → (iEdg‘𝑈) = (𝐼𝐽))
Assertion
Ref Expression
vtxdun (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)))

Proof of Theorem vtxdun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3434 . . . . . . . 8 {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}
2 vtxdun.u . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑈) = (𝐼𝐽))
32dmeqd 5919 . . . . . . . . . . . . . 14 (𝜑 → dom (iEdg‘𝑈) = dom (𝐼𝐽))
4 dmun 5924 . . . . . . . . . . . . . 14 dom (𝐼𝐽) = (dom 𝐼 ∪ dom 𝐽)
53, 4eqtrdi 2791 . . . . . . . . . . . . 13 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐼 ∪ dom 𝐽))
65eleq2d 2825 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ dom (iEdg‘𝑈) ↔ 𝑥 ∈ (dom 𝐼 ∪ dom 𝐽)))
7 elun 4163 . . . . . . . . . . . 12 (𝑥 ∈ (dom 𝐼 ∪ dom 𝐽) ↔ (𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽))
86, 7bitrdi 287 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom (iEdg‘𝑈) ↔ (𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽)))
98anbi1d 631 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))))
10 andir 1010 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))))
119, 10bitrdi 287 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))))
1211abbidv 2806 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))})
131, 12eqtrid 2787 . . . . . . 7 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))})
14 unab 4314 . . . . . . . . 9 ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) = {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))}
1514eqcomi 2744 . . . . . . . 8 {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))})
1615a1i 11 . . . . . . 7 (𝜑 → {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}))
17 df-rab 3434 . . . . . . . . 9 {𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}
182fveq1d 6909 . . . . . . . . . . . . 13 (𝜑 → ((iEdg‘𝑈)‘𝑥) = ((𝐼𝐽)‘𝑥))
1918adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐼) → ((iEdg‘𝑈)‘𝑥) = ((𝐼𝐽)‘𝑥))
20 vtxdun.fi . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐼)
2120funfnd 6599 . . . . . . . . . . . . . 14 (𝜑𝐼 Fn dom 𝐼)
2221adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼)
23 vtxdun.fj . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐽)
2423funfnd 6599 . . . . . . . . . . . . . 14 (𝜑𝐽 Fn dom 𝐽)
2524adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐼) → 𝐽 Fn dom 𝐽)
26 vtxdun.d . . . . . . . . . . . . . 14 (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅)
2726anim1i 615 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐼) → ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐼))
28 fvun1 7000 . . . . . . . . . . . . 13 ((𝐼 Fn dom 𝐼𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐼)) → ((𝐼𝐽)‘𝑥) = (𝐼𝑥))
2922, 25, 27, 28syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐼) → ((𝐼𝐽)‘𝑥) = (𝐼𝑥))
3019, 29eqtrd 2775 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐼) → ((iEdg‘𝑈)‘𝑥) = (𝐼𝑥))
3130eleq2d 2825 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐼) → (𝑁 ∈ ((iEdg‘𝑈)‘𝑥) ↔ 𝑁 ∈ (𝐼𝑥)))
3231rabbidva 3440 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)})
3317, 32eqtr3id 2789 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)})
34 df-rab 3434 . . . . . . . . 9 {𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}
3518adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐽) → ((iEdg‘𝑈)‘𝑥) = ((𝐼𝐽)‘𝑥))
3621adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐽) → 𝐼 Fn dom 𝐼)
3724adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐽) → 𝐽 Fn dom 𝐽)
3826anim1i 615 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐽) → ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐽))
39 fvun2 7001 . . . . . . . . . . . . 13 ((𝐼 Fn dom 𝐼𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐽)) → ((𝐼𝐽)‘𝑥) = (𝐽𝑥))
4036, 37, 38, 39syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐽) → ((𝐼𝐽)‘𝑥) = (𝐽𝑥))
4135, 40eqtrd 2775 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐽) → ((iEdg‘𝑈)‘𝑥) = (𝐽𝑥))
4241eleq2d 2825 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐽) → (𝑁 ∈ ((iEdg‘𝑈)‘𝑥) ↔ 𝑁 ∈ (𝐽𝑥)))
4342rabbidva 3440 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})
4434, 43eqtr3id 2789 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})
4533, 44uneq12d 4179 . . . . . . 7 (𝜑 → ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) = ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}))
4613, 16, 453eqtrd 2779 . . . . . 6 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}))
4746fveq2d 6911 . . . . 5 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) = (♯‘({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
48 vtxdun.i . . . . . . . . . 10 𝐼 = (iEdg‘𝐺)
4948fvexi 6921 . . . . . . . . 9 𝐼 ∈ V
5049dmex 7932 . . . . . . . 8 dom 𝐼 ∈ V
5150rabex 5345 . . . . . . 7 {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V
5251a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V)
53 vtxdun.j . . . . . . . . . 10 𝐽 = (iEdg‘𝐻)
5453fvexi 6921 . . . . . . . . 9 𝐽 ∈ V
5554dmex 7932 . . . . . . . 8 dom 𝐽 ∈ V
5655rabex 5345 . . . . . . 7 {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V
5756a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V)
58 ssrab2 4090 . . . . . . . . 9 {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ⊆ dom 𝐼
59 ssrab2 4090 . . . . . . . . 9 {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ⊆ dom 𝐽
60 ss2in 4253 . . . . . . . . 9 (({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ⊆ dom 𝐼 ∧ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ⊆ dom 𝐽) → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ (dom 𝐼 ∩ dom 𝐽))
6158, 59, 60mp2an 692 . . . . . . . 8 ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ (dom 𝐼 ∩ dom 𝐽)
6261, 26sseqtrid 4048 . . . . . . 7 (𝜑 → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ ∅)
63 ss0 4408 . . . . . . 7 (({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ ∅ → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) = ∅)
6462, 63syl 17 . . . . . 6 (𝜑 → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) = ∅)
65 hashunx 14422 . . . . . 6 (({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V ∧ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V ∧ ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) = ∅) → (♯‘({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) = ((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
6652, 57, 64, 65syl3anc 1370 . . . . 5 (𝜑 → (♯‘({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) = ((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
6747, 66eqtrd 2775 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) = ((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
68 df-rab 3434 . . . . . . . 8 {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}
698anbi1d 631 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})))
70 andir 1010 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})))
7169, 70bitrdi 287 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))))
7271abbidv 2806 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))})
7368, 72eqtrid 2787 . . . . . . 7 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))})
74 unab 4314 . . . . . . . . 9 ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))}
7574eqcomi 2744 . . . . . . . 8 {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})})
7675a1i 11 . . . . . . 7 (𝜑 → {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}))
77 df-rab 3434 . . . . . . . . 9 {𝑥 ∈ dom 𝐼 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}
7830eqeq1d 2737 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐼) → (((iEdg‘𝑈)‘𝑥) = {𝑁} ↔ (𝐼𝑥) = {𝑁}))
7978rabbidva 3440 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐼 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})
8077, 79eqtr3id 2789 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})
81 df-rab 3434 . . . . . . . . 9 {𝑥 ∈ dom 𝐽 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}
8241eqeq1d 2737 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐽) → (((iEdg‘𝑈)‘𝑥) = {𝑁} ↔ (𝐽𝑥) = {𝑁}))
8382rabbidva 3440 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐽 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})
8481, 83eqtr3id 2789 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})
8580, 84uneq12d 4179 . . . . . . 7 (𝜑 → ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) = ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))
8673, 76, 853eqtrd 2779 . . . . . 6 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))
8786fveq2d 6911 . . . . 5 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}) = (♯‘({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
8850rabex 5345 . . . . . . 7 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V
8988a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V)
9055rabex 5345 . . . . . . 7 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V
9190a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V)
92 ssrab2 4090 . . . . . . . . 9 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ⊆ dom 𝐼
93 ssrab2 4090 . . . . . . . . 9 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ⊆ dom 𝐽
94 ss2in 4253 . . . . . . . . 9 (({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ⊆ dom 𝐼 ∧ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ⊆ dom 𝐽) → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ (dom 𝐼 ∩ dom 𝐽))
9592, 93, 94mp2an 692 . . . . . . . 8 ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ (dom 𝐼 ∩ dom 𝐽)
9695, 26sseqtrid 4048 . . . . . . 7 (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ ∅)
97 ss0 4408 . . . . . . 7 (({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ ∅ → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) = ∅)
9896, 97syl 17 . . . . . 6 (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) = ∅)
99 hashunx 14422 . . . . . 6 (({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V ∧ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V ∧ ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) = ∅) → (♯‘({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
10089, 91, 98, 99syl3anc 1370 . . . . 5 (𝜑 → (♯‘({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
10187, 100eqtrd 2775 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
10267, 101oveq12d 7449 . . 3 (𝜑 → ((♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})) = (((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) +𝑒 ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
103 hashxnn0 14375 . . . . 5 ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V → (♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) ∈ ℕ0*)
10452, 103syl 17 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) ∈ ℕ0*)
105 hashxnn0 14375 . . . . 5 ({𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V → (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ∈ ℕ0*)
10657, 105syl 17 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ∈ ℕ0*)
107 hashxnn0 14375 . . . . 5 ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V → (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) ∈ ℕ0*)
10889, 107syl 17 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) ∈ ℕ0*)
109 hashxnn0 14375 . . . . 5 ({𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V → (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ∈ ℕ0*)
11091, 109syl 17 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ∈ ℕ0*)
111104, 106, 108, 110xnn0add4d 13343 . . 3 (𝜑 → (((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) +𝑒 ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))) = (((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})) +𝑒 ((♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
112102, 111eqtrd 2775 . 2 (𝜑 → ((♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})) = (((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})) +𝑒 ((♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
113 vtxdun.n . . . 4 (𝜑𝑁𝑉)
114 vtxdun.vu . . . 4 (𝜑 → (Vtx‘𝑈) = 𝑉)
115113, 114eleqtrrd 2842 . . 3 (𝜑𝑁 ∈ (Vtx‘𝑈))
116 eqid 2735 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
117 eqid 2735 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
118 eqid 2735 . . . 4 dom (iEdg‘𝑈) = dom (iEdg‘𝑈)
119116, 117, 118vtxdgval 29501 . . 3 (𝑁 ∈ (Vtx‘𝑈) → ((VtxDeg‘𝑈)‘𝑁) = ((♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})))
120115, 119syl 17 . 2 (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = ((♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})))
121 vtxdun.vg . . . . 5 𝑉 = (Vtx‘𝐺)
122 eqid 2735 . . . . 5 dom 𝐼 = dom 𝐼
123121, 48, 122vtxdgval 29501 . . . 4 (𝑁𝑉 → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})))
124113, 123syl 17 . . 3 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})))
125 vtxdun.vh . . . . 5 (𝜑 → (Vtx‘𝐻) = 𝑉)
126113, 125eleqtrrd 2842 . . . 4 (𝜑𝑁 ∈ (Vtx‘𝐻))
127 eqid 2735 . . . . 5 (Vtx‘𝐻) = (Vtx‘𝐻)
128 eqid 2735 . . . . 5 dom 𝐽 = dom 𝐽
129127, 53, 128vtxdgval 29501 . . . 4 (𝑁 ∈ (Vtx‘𝐻) → ((VtxDeg‘𝐻)‘𝑁) = ((♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
130126, 129syl 17 . . 3 (𝜑 → ((VtxDeg‘𝐻)‘𝑁) = ((♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
131124, 130oveq12d 7449 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)) = (((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})) +𝑒 ((♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
132112, 120, 1313eqtr4d 2785 1 (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  {cab 2712  {crab 3433  Vcvv 3478  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631  dom cdm 5689  Fun wfun 6557   Fn wfn 6558  cfv 6563  (class class class)co 7431  0*cxnn0 12597   +𝑒 cxad 13150  chash 14366  Vtxcvtx 29028  iEdgciedg 29029  VtxDegcvtxdg 29498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-xadd 13153  df-hash 14367  df-vtxdg 29499
This theorem is referenced by:  vtxdfiun  29515  vtxduhgrun  29516  p1evtxdeqlem  29545
  Copyright terms: Public domain W3C validator