MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdun Structured version   Visualization version   GIF version

Theorem vtxdun 29462
Description: The degree of a vertex in the union of two graphs on the same vertex set is the sum of the degrees of the vertex in each graph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 19-Feb-2021.)
Hypotheses
Ref Expression
vtxdun.i 𝐼 = (iEdg‘𝐺)
vtxdun.j 𝐽 = (iEdg‘𝐻)
vtxdun.vg 𝑉 = (Vtx‘𝐺)
vtxdun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
vtxdun.vu (𝜑 → (Vtx‘𝑈) = 𝑉)
vtxdun.d (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅)
vtxdun.fi (𝜑 → Fun 𝐼)
vtxdun.fj (𝜑 → Fun 𝐽)
vtxdun.n (𝜑𝑁𝑉)
vtxdun.u (𝜑 → (iEdg‘𝑈) = (𝐼𝐽))
Assertion
Ref Expression
vtxdun (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)))

Proof of Theorem vtxdun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3397 . . . . . . . 8 {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}
2 vtxdun.u . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑈) = (𝐼𝐽))
32dmeqd 5849 . . . . . . . . . . . . . 14 (𝜑 → dom (iEdg‘𝑈) = dom (𝐼𝐽))
4 dmun 5854 . . . . . . . . . . . . . 14 dom (𝐼𝐽) = (dom 𝐼 ∪ dom 𝐽)
53, 4eqtrdi 2784 . . . . . . . . . . . . 13 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐼 ∪ dom 𝐽))
65eleq2d 2819 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ dom (iEdg‘𝑈) ↔ 𝑥 ∈ (dom 𝐼 ∪ dom 𝐽)))
7 elun 4102 . . . . . . . . . . . 12 (𝑥 ∈ (dom 𝐼 ∪ dom 𝐽) ↔ (𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽))
86, 7bitrdi 287 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom (iEdg‘𝑈) ↔ (𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽)))
98anbi1d 631 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))))
10 andir 1010 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))))
119, 10bitrdi 287 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))))
1211abbidv 2799 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))})
131, 12eqtrid 2780 . . . . . . 7 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))})
14 unab 4257 . . . . . . . . 9 ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) = {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))}
1514eqcomi 2742 . . . . . . . 8 {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))})
1615a1i 11 . . . . . . 7 (𝜑 → {𝑥 ∣ ((𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}))
17 df-rab 3397 . . . . . . . . 9 {𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}
182fveq1d 6830 . . . . . . . . . . . . 13 (𝜑 → ((iEdg‘𝑈)‘𝑥) = ((𝐼𝐽)‘𝑥))
1918adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐼) → ((iEdg‘𝑈)‘𝑥) = ((𝐼𝐽)‘𝑥))
20 vtxdun.fi . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐼)
2120funfnd 6517 . . . . . . . . . . . . . 14 (𝜑𝐼 Fn dom 𝐼)
2221adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼)
23 vtxdun.fj . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐽)
2423funfnd 6517 . . . . . . . . . . . . . 14 (𝜑𝐽 Fn dom 𝐽)
2524adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐼) → 𝐽 Fn dom 𝐽)
26 vtxdun.d . . . . . . . . . . . . . 14 (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅)
2726anim1i 615 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐼) → ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐼))
28 fvun1 6919 . . . . . . . . . . . . 13 ((𝐼 Fn dom 𝐼𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐼)) → ((𝐼𝐽)‘𝑥) = (𝐼𝑥))
2922, 25, 27, 28syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐼) → ((𝐼𝐽)‘𝑥) = (𝐼𝑥))
3019, 29eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐼) → ((iEdg‘𝑈)‘𝑥) = (𝐼𝑥))
3130eleq2d 2819 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐼) → (𝑁 ∈ ((iEdg‘𝑈)‘𝑥) ↔ 𝑁 ∈ (𝐼𝑥)))
3231rabbidva 3402 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)})
3317, 32eqtr3id 2782 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)})
34 df-rab 3397 . . . . . . . . 9 {𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}
3518adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐽) → ((iEdg‘𝑈)‘𝑥) = ((𝐼𝐽)‘𝑥))
3621adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐽) → 𝐼 Fn dom 𝐼)
3724adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐽) → 𝐽 Fn dom 𝐽)
3826anim1i 615 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐽) → ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐽))
39 fvun2 6920 . . . . . . . . . . . . 13 ((𝐼 Fn dom 𝐼𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐽)) → ((𝐼𝐽)‘𝑥) = (𝐽𝑥))
4036, 37, 38, 39syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom 𝐽) → ((𝐼𝐽)‘𝑥) = (𝐽𝑥))
4135, 40eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐽) → ((iEdg‘𝑈)‘𝑥) = (𝐽𝑥))
4241eleq2d 2819 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐽) → (𝑁 ∈ ((iEdg‘𝑈)‘𝑥) ↔ 𝑁 ∈ (𝐽𝑥)))
4342rabbidva 3402 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})
4434, 43eqtr3id 2782 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})
4533, 44uneq12d 4118 . . . . . . 7 (𝜑 → ({𝑥 ∣ (𝑥 ∈ dom 𝐼𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) = ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}))
4613, 16, 453eqtrd 2772 . . . . . 6 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}))
4746fveq2d 6832 . . . . 5 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) = (♯‘({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
48 vtxdun.i . . . . . . . . . 10 𝐼 = (iEdg‘𝐺)
4948fvexi 6842 . . . . . . . . 9 𝐼 ∈ V
5049dmex 7845 . . . . . . . 8 dom 𝐼 ∈ V
5150rabex 5279 . . . . . . 7 {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V
5251a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V)
53 vtxdun.j . . . . . . . . . 10 𝐽 = (iEdg‘𝐻)
5453fvexi 6842 . . . . . . . . 9 𝐽 ∈ V
5554dmex 7845 . . . . . . . 8 dom 𝐽 ∈ V
5655rabex 5279 . . . . . . 7 {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V
5756a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V)
58 ssrab2 4029 . . . . . . . . 9 {𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ⊆ dom 𝐼
59 ssrab2 4029 . . . . . . . . 9 {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ⊆ dom 𝐽
60 ss2in 4194 . . . . . . . . 9 (({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ⊆ dom 𝐼 ∧ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ⊆ dom 𝐽) → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ (dom 𝐼 ∩ dom 𝐽))
6158, 59, 60mp2an 692 . . . . . . . 8 ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ (dom 𝐼 ∩ dom 𝐽)
6261, 26sseqtrid 3973 . . . . . . 7 (𝜑 → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ ∅)
63 ss0 4351 . . . . . . 7 (({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ⊆ ∅ → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) = ∅)
6462, 63syl 17 . . . . . 6 (𝜑 → ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) = ∅)
65 hashunx 14295 . . . . . 6 (({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V ∧ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V ∧ ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∩ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) = ∅) → (♯‘({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) = ((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
6652, 57, 64, 65syl3anc 1373 . . . . 5 (𝜑 → (♯‘({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∪ {𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) = ((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
6747, 66eqtrd 2768 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) = ((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})))
68 df-rab 3397 . . . . . . . 8 {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}
698anbi1d 631 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})))
70 andir 1010 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐼𝑥 ∈ dom 𝐽) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})))
7169, 70bitrdi 287 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))))
7271abbidv 2799 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))})
7368, 72eqtrid 2780 . . . . . . 7 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))})
74 unab 4257 . . . . . . . . 9 ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))}
7574eqcomi 2742 . . . . . . . 8 {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})})
7675a1i 11 . . . . . . 7 (𝜑 → {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}))
77 df-rab 3397 . . . . . . . . 9 {𝑥 ∈ dom 𝐼 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}
7830eqeq1d 2735 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐼) → (((iEdg‘𝑈)‘𝑥) = {𝑁} ↔ (𝐼𝑥) = {𝑁}))
7978rabbidva 3402 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐼 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})
8077, 79eqtr3id 2782 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})
81 df-rab 3397 . . . . . . . . 9 {𝑥 ∈ dom 𝐽 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}
8241eqeq1d 2735 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐽) → (((iEdg‘𝑈)‘𝑥) = {𝑁} ↔ (𝐽𝑥) = {𝑁}))
8382rabbidva 3402 . . . . . . . . 9 (𝜑 → {𝑥 ∈ dom 𝐽 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})
8481, 83eqtr3id 2782 . . . . . . . 8 (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})
8580, 84uneq12d 4118 . . . . . . 7 (𝜑 → ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) = ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))
8673, 76, 853eqtrd 2772 . . . . . 6 (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))
8786fveq2d 6832 . . . . 5 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}) = (♯‘({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
8850rabex 5279 . . . . . . 7 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V
8988a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V)
9055rabex 5279 . . . . . . 7 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V
9190a1i 11 . . . . . 6 (𝜑 → {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V)
92 ssrab2 4029 . . . . . . . . 9 {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ⊆ dom 𝐼
93 ssrab2 4029 . . . . . . . . 9 {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ⊆ dom 𝐽
94 ss2in 4194 . . . . . . . . 9 (({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ⊆ dom 𝐼 ∧ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ⊆ dom 𝐽) → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ (dom 𝐼 ∩ dom 𝐽))
9592, 93, 94mp2an 692 . . . . . . . 8 ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ (dom 𝐼 ∩ dom 𝐽)
9695, 26sseqtrid 3973 . . . . . . 7 (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ ∅)
97 ss0 4351 . . . . . . 7 (({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ⊆ ∅ → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) = ∅)
9896, 97syl 17 . . . . . 6 (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) = ∅)
99 hashunx 14295 . . . . . 6 (({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V ∧ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V ∧ ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) = ∅) → (♯‘({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
10089, 91, 98, 99syl3anc 1373 . . . . 5 (𝜑 → (♯‘({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
10187, 100eqtrd 2768 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
10267, 101oveq12d 7370 . . 3 (𝜑 → ((♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})) = (((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) +𝑒 ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
103 hashxnn0 14248 . . . . 5 ({𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)} ∈ V → (♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) ∈ ℕ0*)
10452, 103syl 17 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) ∈ ℕ0*)
105 hashxnn0 14248 . . . . 5 ({𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)} ∈ V → (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ∈ ℕ0*)
10657, 105syl 17 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) ∈ ℕ0*)
107 hashxnn0 14248 . . . . 5 ({𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}} ∈ V → (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) ∈ ℕ0*)
10889, 107syl 17 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) ∈ ℕ0*)
109 hashxnn0 14248 . . . . 5 ({𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}} ∈ V → (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ∈ ℕ0*)
11091, 109syl 17 . . . 4 (𝜑 → (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}) ∈ ℕ0*)
111104, 106, 108, 110xnn0add4d 13205 . . 3 (𝜑 → (((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)})) +𝑒 ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))) = (((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})) +𝑒 ((♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
112102, 111eqtrd 2768 . 2 (𝜑 → ((♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})) = (((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})) +𝑒 ((♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
113 vtxdun.n . . . 4 (𝜑𝑁𝑉)
114 vtxdun.vu . . . 4 (𝜑 → (Vtx‘𝑈) = 𝑉)
115113, 114eleqtrrd 2836 . . 3 (𝜑𝑁 ∈ (Vtx‘𝑈))
116 eqid 2733 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
117 eqid 2733 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
118 eqid 2733 . . . 4 dom (iEdg‘𝑈) = dom (iEdg‘𝑈)
119116, 117, 118vtxdgval 29449 . . 3 (𝑁 ∈ (Vtx‘𝑈) → ((VtxDeg‘𝑈)‘𝑁) = ((♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})))
120115, 119syl 17 . 2 (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = ((♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})))
121 vtxdun.vg . . . . 5 𝑉 = (Vtx‘𝐺)
122 eqid 2733 . . . . 5 dom 𝐼 = dom 𝐼
123121, 48, 122vtxdgval 29449 . . . 4 (𝑁𝑉 → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})))
124113, 123syl 17 . . 3 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})))
125 vtxdun.vh . . . . 5 (𝜑 → (Vtx‘𝐻) = 𝑉)
126113, 125eleqtrrd 2836 . . . 4 (𝜑𝑁 ∈ (Vtx‘𝐻))
127 eqid 2733 . . . . 5 (Vtx‘𝐻) = (Vtx‘𝐻)
128 eqid 2733 . . . . 5 dom 𝐽 = dom 𝐽
129127, 53, 128vtxdgval 29449 . . . 4 (𝑁 ∈ (Vtx‘𝐻) → ((VtxDeg‘𝐻)‘𝑁) = ((♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
130126, 129syl 17 . . 3 (𝜑 → ((VtxDeg‘𝐻)‘𝑁) = ((♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}})))
131124, 130oveq12d 7370 . 2 (𝜑 → (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)) = (((♯‘{𝑥 ∈ dom 𝐼𝑁 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) = {𝑁}})) +𝑒 ((♯‘{𝑥 ∈ dom 𝐽𝑁 ∈ (𝐽𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) = {𝑁}}))))
132112, 120, 1313eqtr4d 2778 1 (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  {cab 2711  {crab 3396  Vcvv 3437  cun 3896  cin 3897  wss 3898  c0 4282  {csn 4575  dom cdm 5619  Fun wfun 6480   Fn wfn 6481  cfv 6486  (class class class)co 7352  0*cxnn0 12461   +𝑒 cxad 13011  chash 14239  Vtxcvtx 28976  iEdgciedg 28977  VtxDegcvtxdg 29446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-xadd 13014  df-hash 14240  df-vtxdg 29447
This theorem is referenced by:  vtxdfiun  29463  vtxduhgrun  29464  p1evtxdeqlem  29493
  Copyright terms: Public domain W3C validator