MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdun Structured version   Visualization version   GIF version

Theorem vtxdun 29351
Description: The degree of a vertex in the union of two graphs on the same vertex set is the sum of the degrees of the vertex in each graph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 19-Feb-2021.)
Hypotheses
Ref Expression
vtxdun.i 𝐼 = (iEdgβ€˜πΊ)
vtxdun.j 𝐽 = (iEdgβ€˜π»)
vtxdun.vg 𝑉 = (Vtxβ€˜πΊ)
vtxdun.vh (πœ‘ β†’ (Vtxβ€˜π») = 𝑉)
vtxdun.vu (πœ‘ β†’ (Vtxβ€˜π‘ˆ) = 𝑉)
vtxdun.d (πœ‘ β†’ (dom 𝐼 ∩ dom 𝐽) = βˆ…)
vtxdun.fi (πœ‘ β†’ Fun 𝐼)
vtxdun.fj (πœ‘ β†’ Fun 𝐽)
vtxdun.n (πœ‘ β†’ 𝑁 ∈ 𝑉)
vtxdun.u (πœ‘ β†’ (iEdgβ€˜π‘ˆ) = (𝐼 βˆͺ 𝐽))
Assertion
Ref Expression
vtxdun (πœ‘ β†’ ((VtxDegβ€˜π‘ˆ)β€˜π‘) = (((VtxDegβ€˜πΊ)β€˜π‘) +𝑒 ((VtxDegβ€˜π»)β€˜π‘)))

Proof of Theorem vtxdun
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 df-rab 3420 . . . . . . . 8 {π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)} = {π‘₯ ∣ (π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))}
2 vtxdun.u . . . . . . . . . . . . . . 15 (πœ‘ β†’ (iEdgβ€˜π‘ˆ) = (𝐼 βˆͺ 𝐽))
32dmeqd 5907 . . . . . . . . . . . . . 14 (πœ‘ β†’ dom (iEdgβ€˜π‘ˆ) = dom (𝐼 βˆͺ 𝐽))
4 dmun 5912 . . . . . . . . . . . . . 14 dom (𝐼 βˆͺ 𝐽) = (dom 𝐼 βˆͺ dom 𝐽)
53, 4eqtrdi 2781 . . . . . . . . . . . . 13 (πœ‘ β†’ dom (iEdgβ€˜π‘ˆ) = (dom 𝐼 βˆͺ dom 𝐽))
65eleq2d 2811 . . . . . . . . . . . 12 (πœ‘ β†’ (π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ↔ π‘₯ ∈ (dom 𝐼 βˆͺ dom 𝐽)))
7 elun 4146 . . . . . . . . . . . 12 (π‘₯ ∈ (dom 𝐼 βˆͺ dom 𝐽) ↔ (π‘₯ ∈ dom 𝐼 ∨ π‘₯ ∈ dom 𝐽))
86, 7bitrdi 286 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ↔ (π‘₯ ∈ dom 𝐼 ∨ π‘₯ ∈ dom 𝐽)))
98anbi1d 629 . . . . . . . . . 10 (πœ‘ β†’ ((π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)) ↔ ((π‘₯ ∈ dom 𝐼 ∨ π‘₯ ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))))
10 andir 1006 . . . . . . . . . 10 (((π‘₯ ∈ dom 𝐼 ∨ π‘₯ ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)) ↔ ((π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)) ∨ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))))
119, 10bitrdi 286 . . . . . . . . 9 (πœ‘ β†’ ((π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)) ↔ ((π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)) ∨ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)))))
1211abbidv 2794 . . . . . . . 8 (πœ‘ β†’ {π‘₯ ∣ (π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))} = {π‘₯ ∣ ((π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)) ∨ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)))})
131, 12eqtrid 2777 . . . . . . 7 (πœ‘ β†’ {π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)} = {π‘₯ ∣ ((π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)) ∨ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)))})
14 unab 4298 . . . . . . . . 9 ({π‘₯ ∣ (π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))} βˆͺ {π‘₯ ∣ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))}) = {π‘₯ ∣ ((π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)) ∨ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)))}
1514eqcomi 2734 . . . . . . . 8 {π‘₯ ∣ ((π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)) ∨ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)))} = ({π‘₯ ∣ (π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))} βˆͺ {π‘₯ ∣ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))})
1615a1i 11 . . . . . . 7 (πœ‘ β†’ {π‘₯ ∣ ((π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)) ∨ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)))} = ({π‘₯ ∣ (π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))} βˆͺ {π‘₯ ∣ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))}))
17 df-rab 3420 . . . . . . . . 9 {π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)} = {π‘₯ ∣ (π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))}
182fveq1d 6896 . . . . . . . . . . . . 13 (πœ‘ β†’ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = ((𝐼 βˆͺ 𝐽)β€˜π‘₯))
1918adantr 479 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ dom 𝐼) β†’ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = ((𝐼 βˆͺ 𝐽)β€˜π‘₯))
20 vtxdun.fi . . . . . . . . . . . . . . 15 (πœ‘ β†’ Fun 𝐼)
2120funfnd 6583 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐼 Fn dom 𝐼)
2221adantr 479 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ dom 𝐼) β†’ 𝐼 Fn dom 𝐼)
23 vtxdun.fj . . . . . . . . . . . . . . 15 (πœ‘ β†’ Fun 𝐽)
2423funfnd 6583 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐽 Fn dom 𝐽)
2524adantr 479 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ dom 𝐼) β†’ 𝐽 Fn dom 𝐽)
26 vtxdun.d . . . . . . . . . . . . . 14 (πœ‘ β†’ (dom 𝐼 ∩ dom 𝐽) = βˆ…)
2726anim1i 613 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ dom 𝐼) β†’ ((dom 𝐼 ∩ dom 𝐽) = βˆ… ∧ π‘₯ ∈ dom 𝐼))
28 fvun1 6986 . . . . . . . . . . . . 13 ((𝐼 Fn dom 𝐼 ∧ 𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = βˆ… ∧ π‘₯ ∈ dom 𝐼)) β†’ ((𝐼 βˆͺ 𝐽)β€˜π‘₯) = (πΌβ€˜π‘₯))
2922, 25, 27, 28syl3anc 1368 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ dom 𝐼) β†’ ((𝐼 βˆͺ 𝐽)β€˜π‘₯) = (πΌβ€˜π‘₯))
3019, 29eqtrd 2765 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ dom 𝐼) β†’ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = (πΌβ€˜π‘₯))
3130eleq2d 2811 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ dom 𝐼) β†’ (𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) ↔ 𝑁 ∈ (πΌβ€˜π‘₯)))
3231rabbidva 3426 . . . . . . . . 9 (πœ‘ β†’ {π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)} = {π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)})
3317, 32eqtr3id 2779 . . . . . . . 8 (πœ‘ β†’ {π‘₯ ∣ (π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))} = {π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)})
34 df-rab 3420 . . . . . . . . 9 {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)} = {π‘₯ ∣ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))}
3518adantr 479 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ dom 𝐽) β†’ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = ((𝐼 βˆͺ 𝐽)β€˜π‘₯))
3621adantr 479 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ dom 𝐽) β†’ 𝐼 Fn dom 𝐼)
3724adantr 479 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ dom 𝐽) β†’ 𝐽 Fn dom 𝐽)
3826anim1i 613 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ dom 𝐽) β†’ ((dom 𝐼 ∩ dom 𝐽) = βˆ… ∧ π‘₯ ∈ dom 𝐽))
39 fvun2 6987 . . . . . . . . . . . . 13 ((𝐼 Fn dom 𝐼 ∧ 𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = βˆ… ∧ π‘₯ ∈ dom 𝐽)) β†’ ((𝐼 βˆͺ 𝐽)β€˜π‘₯) = (π½β€˜π‘₯))
4036, 37, 38, 39syl3anc 1368 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ dom 𝐽) β†’ ((𝐼 βˆͺ 𝐽)β€˜π‘₯) = (π½β€˜π‘₯))
4135, 40eqtrd 2765 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ dom 𝐽) β†’ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = (π½β€˜π‘₯))
4241eleq2d 2811 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ dom 𝐽) β†’ (𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) ↔ 𝑁 ∈ (π½β€˜π‘₯)))
4342rabbidva 3426 . . . . . . . . 9 (πœ‘ β†’ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)} = {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)})
4434, 43eqtr3id 2779 . . . . . . . 8 (πœ‘ β†’ {π‘₯ ∣ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))} = {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)})
4533, 44uneq12d 4162 . . . . . . 7 (πœ‘ β†’ ({π‘₯ ∣ (π‘₯ ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))} βˆͺ {π‘₯ ∣ (π‘₯ ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯))}) = ({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} βˆͺ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}))
4613, 16, 453eqtrd 2769 . . . . . 6 (πœ‘ β†’ {π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)} = ({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} βˆͺ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}))
4746fveq2d 6898 . . . . 5 (πœ‘ β†’ (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)}) = (β™―β€˜({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} βˆͺ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)})))
48 vtxdun.i . . . . . . . . . 10 𝐼 = (iEdgβ€˜πΊ)
4948fvexi 6908 . . . . . . . . 9 𝐼 ∈ V
5049dmex 7915 . . . . . . . 8 dom 𝐼 ∈ V
5150rabex 5334 . . . . . . 7 {π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} ∈ V
5251a1i 11 . . . . . 6 (πœ‘ β†’ {π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} ∈ V)
53 vtxdun.j . . . . . . . . . 10 𝐽 = (iEdgβ€˜π»)
5453fvexi 6908 . . . . . . . . 9 𝐽 ∈ V
5554dmex 7915 . . . . . . . 8 dom 𝐽 ∈ V
5655rabex 5334 . . . . . . 7 {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)} ∈ V
5756a1i 11 . . . . . 6 (πœ‘ β†’ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)} ∈ V)
58 ssrab2 4074 . . . . . . . . 9 {π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} βŠ† dom 𝐼
59 ssrab2 4074 . . . . . . . . 9 {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)} βŠ† dom 𝐽
60 ss2in 4236 . . . . . . . . 9 (({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} βŠ† dom 𝐼 ∧ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)} βŠ† dom 𝐽) β†’ ({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} ∩ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) βŠ† (dom 𝐼 ∩ dom 𝐽))
6158, 59, 60mp2an 690 . . . . . . . 8 ({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} ∩ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) βŠ† (dom 𝐼 ∩ dom 𝐽)
6261, 26sseqtrid 4030 . . . . . . 7 (πœ‘ β†’ ({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} ∩ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) βŠ† βˆ…)
63 ss0 4399 . . . . . . 7 (({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} ∩ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) βŠ† βˆ… β†’ ({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} ∩ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) = βˆ…)
6462, 63syl 17 . . . . . 6 (πœ‘ β†’ ({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} ∩ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) = βˆ…)
65 hashunx 14377 . . . . . 6 (({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} ∈ V ∧ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)} ∈ V ∧ ({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} ∩ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) = βˆ…) β†’ (β™―β€˜({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} βˆͺ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)})) = ((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)})))
6652, 57, 64, 65syl3anc 1368 . . . . 5 (πœ‘ β†’ (β™―β€˜({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} βˆͺ {π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)})) = ((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)})))
6747, 66eqtrd 2765 . . . 4 (πœ‘ β†’ (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)}) = ((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)})))
68 df-rab 3420 . . . . . . . 8 {π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}} = {π‘₯ ∣ (π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})}
698anbi1d 629 . . . . . . . . . 10 (πœ‘ β†’ ((π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}) ↔ ((π‘₯ ∈ dom 𝐼 ∨ π‘₯ ∈ dom 𝐽) ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})))
70 andir 1006 . . . . . . . . . 10 (((π‘₯ ∈ dom 𝐼 ∨ π‘₯ ∈ dom 𝐽) ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}) ↔ ((π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}) ∨ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})))
7169, 70bitrdi 286 . . . . . . . . 9 (πœ‘ β†’ ((π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}) ↔ ((π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}) ∨ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}))))
7271abbidv 2794 . . . . . . . 8 (πœ‘ β†’ {π‘₯ ∣ (π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})} = {π‘₯ ∣ ((π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}) ∨ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}))})
7368, 72eqtrid 2777 . . . . . . 7 (πœ‘ β†’ {π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}} = {π‘₯ ∣ ((π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}) ∨ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}))})
74 unab 4298 . . . . . . . . 9 ({π‘₯ ∣ (π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})} βˆͺ {π‘₯ ∣ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})}) = {π‘₯ ∣ ((π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}) ∨ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}))}
7574eqcomi 2734 . . . . . . . 8 {π‘₯ ∣ ((π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}) ∨ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}))} = ({π‘₯ ∣ (π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})} βˆͺ {π‘₯ ∣ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})})
7675a1i 11 . . . . . . 7 (πœ‘ β†’ {π‘₯ ∣ ((π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}) ∨ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}))} = ({π‘₯ ∣ (π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})} βˆͺ {π‘₯ ∣ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})}))
77 df-rab 3420 . . . . . . . . 9 {π‘₯ ∈ dom 𝐼 ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}} = {π‘₯ ∣ (π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})}
7830eqeq1d 2727 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ dom 𝐼) β†’ (((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁} ↔ (πΌβ€˜π‘₯) = {𝑁}))
7978rabbidva 3426 . . . . . . . . 9 (πœ‘ β†’ {π‘₯ ∈ dom 𝐼 ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}} = {π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}})
8077, 79eqtr3id 2779 . . . . . . . 8 (πœ‘ β†’ {π‘₯ ∣ (π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})} = {π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}})
81 df-rab 3420 . . . . . . . . 9 {π‘₯ ∈ dom 𝐽 ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}} = {π‘₯ ∣ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})}
8241eqeq1d 2727 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ dom 𝐽) β†’ (((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁} ↔ (π½β€˜π‘₯) = {𝑁}))
8382rabbidva 3426 . . . . . . . . 9 (πœ‘ β†’ {π‘₯ ∈ dom 𝐽 ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}} = {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}})
8481, 83eqtr3id 2779 . . . . . . . 8 (πœ‘ β†’ {π‘₯ ∣ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})} = {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}})
8580, 84uneq12d 4162 . . . . . . 7 (πœ‘ β†’ ({π‘₯ ∣ (π‘₯ ∈ dom 𝐼 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})} βˆͺ {π‘₯ ∣ (π‘₯ ∈ dom 𝐽 ∧ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁})}) = ({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} βˆͺ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}))
8673, 76, 853eqtrd 2769 . . . . . 6 (πœ‘ β†’ {π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}} = ({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} βˆͺ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}))
8786fveq2d 6898 . . . . 5 (πœ‘ β†’ (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}}) = (β™―β€˜({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} βˆͺ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}})))
8850rabex 5334 . . . . . . 7 {π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} ∈ V
8988a1i 11 . . . . . 6 (πœ‘ β†’ {π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} ∈ V)
9055rabex 5334 . . . . . . 7 {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}} ∈ V
9190a1i 11 . . . . . 6 (πœ‘ β†’ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}} ∈ V)
92 ssrab2 4074 . . . . . . . . 9 {π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} βŠ† dom 𝐼
93 ssrab2 4074 . . . . . . . . 9 {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}} βŠ† dom 𝐽
94 ss2in 4236 . . . . . . . . 9 (({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} βŠ† dom 𝐼 ∧ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}} βŠ† dom 𝐽) β†’ ({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} ∩ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}) βŠ† (dom 𝐼 ∩ dom 𝐽))
9592, 93, 94mp2an 690 . . . . . . . 8 ({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} ∩ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}) βŠ† (dom 𝐼 ∩ dom 𝐽)
9695, 26sseqtrid 4030 . . . . . . 7 (πœ‘ β†’ ({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} ∩ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}) βŠ† βˆ…)
97 ss0 4399 . . . . . . 7 (({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} ∩ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}) βŠ† βˆ… β†’ ({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} ∩ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}) = βˆ…)
9896, 97syl 17 . . . . . 6 (πœ‘ β†’ ({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} ∩ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}) = βˆ…)
99 hashunx 14377 . . . . . 6 (({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} ∈ V ∧ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}} ∈ V ∧ ({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} ∩ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}) = βˆ…) β†’ (β™―β€˜({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} βˆͺ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}})) = ((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}})))
10089, 91, 98, 99syl3anc 1368 . . . . 5 (πœ‘ β†’ (β™―β€˜({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} βˆͺ {π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}})) = ((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}})))
10187, 100eqtrd 2765 . . . 4 (πœ‘ β†’ (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}}) = ((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}})))
10267, 101oveq12d 7435 . . 3 (πœ‘ β†’ ((β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}})) = (((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)})) +𝑒 ((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}))))
103 hashxnn0 14330 . . . . 5 ({π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)} ∈ V β†’ (β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)}) ∈ β„•0*)
10452, 103syl 17 . . . 4 (πœ‘ β†’ (β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)}) ∈ β„•0*)
105 hashxnn0 14330 . . . . 5 ({π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)} ∈ V β†’ (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) ∈ β„•0*)
10657, 105syl 17 . . . 4 (πœ‘ β†’ (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) ∈ β„•0*)
107 hashxnn0 14330 . . . . 5 ({π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}} ∈ V β†’ (β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}}) ∈ β„•0*)
10889, 107syl 17 . . . 4 (πœ‘ β†’ (β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}}) ∈ β„•0*)
109 hashxnn0 14330 . . . . 5 ({π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}} ∈ V β†’ (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}) ∈ β„•0*)
11091, 109syl 17 . . . 4 (πœ‘ β†’ (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}) ∈ β„•0*)
111104, 106, 108, 110xnn0add4d 13315 . . 3 (πœ‘ β†’ (((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)})) +𝑒 ((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}))) = (((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}})) +𝑒 ((β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}))))
112102, 111eqtrd 2765 . 2 (πœ‘ β†’ ((β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}})) = (((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}})) +𝑒 ((β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}))))
113 vtxdun.n . . . 4 (πœ‘ β†’ 𝑁 ∈ 𝑉)
114 vtxdun.vu . . . 4 (πœ‘ β†’ (Vtxβ€˜π‘ˆ) = 𝑉)
115113, 114eleqtrrd 2828 . . 3 (πœ‘ β†’ 𝑁 ∈ (Vtxβ€˜π‘ˆ))
116 eqid 2725 . . . 4 (Vtxβ€˜π‘ˆ) = (Vtxβ€˜π‘ˆ)
117 eqid 2725 . . . 4 (iEdgβ€˜π‘ˆ) = (iEdgβ€˜π‘ˆ)
118 eqid 2725 . . . 4 dom (iEdgβ€˜π‘ˆ) = dom (iEdgβ€˜π‘ˆ)
119116, 117, 118vtxdgval 29338 . . 3 (𝑁 ∈ (Vtxβ€˜π‘ˆ) β†’ ((VtxDegβ€˜π‘ˆ)β€˜π‘) = ((β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}})))
120115, 119syl 17 . 2 (πœ‘ β†’ ((VtxDegβ€˜π‘ˆ)β€˜π‘) = ((β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ 𝑁 ∈ ((iEdgβ€˜π‘ˆ)β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom (iEdgβ€˜π‘ˆ) ∣ ((iEdgβ€˜π‘ˆ)β€˜π‘₯) = {𝑁}})))
121 vtxdun.vg . . . . 5 𝑉 = (Vtxβ€˜πΊ)
122 eqid 2725 . . . . 5 dom 𝐼 = dom 𝐼
123121, 48, 122vtxdgval 29338 . . . 4 (𝑁 ∈ 𝑉 β†’ ((VtxDegβ€˜πΊ)β€˜π‘) = ((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}})))
124113, 123syl 17 . . 3 (πœ‘ β†’ ((VtxDegβ€˜πΊ)β€˜π‘) = ((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}})))
125 vtxdun.vh . . . . 5 (πœ‘ β†’ (Vtxβ€˜π») = 𝑉)
126113, 125eleqtrrd 2828 . . . 4 (πœ‘ β†’ 𝑁 ∈ (Vtxβ€˜π»))
127 eqid 2725 . . . . 5 (Vtxβ€˜π») = (Vtxβ€˜π»)
128 eqid 2725 . . . . 5 dom 𝐽 = dom 𝐽
129127, 53, 128vtxdgval 29338 . . . 4 (𝑁 ∈ (Vtxβ€˜π») β†’ ((VtxDegβ€˜π»)β€˜π‘) = ((β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}})))
130126, 129syl 17 . . 3 (πœ‘ β†’ ((VtxDegβ€˜π»)β€˜π‘) = ((β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}})))
131124, 130oveq12d 7435 . 2 (πœ‘ β†’ (((VtxDegβ€˜πΊ)β€˜π‘) +𝑒 ((VtxDegβ€˜π»)β€˜π‘)) = (((β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ 𝑁 ∈ (πΌβ€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐼 ∣ (πΌβ€˜π‘₯) = {𝑁}})) +𝑒 ((β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ 𝑁 ∈ (π½β€˜π‘₯)}) +𝑒 (β™―β€˜{π‘₯ ∈ dom 𝐽 ∣ (π½β€˜π‘₯) = {𝑁}}))))
132112, 120, 1313eqtr4d 2775 1 (πœ‘ β†’ ((VtxDegβ€˜π‘ˆ)β€˜π‘) = (((VtxDegβ€˜πΊ)β€˜π‘) +𝑒 ((VtxDegβ€˜π»)β€˜π‘)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∨ wo 845   = wceq 1533   ∈ wcel 2098  {cab 2702  {crab 3419  Vcvv 3463   βˆͺ cun 3943   ∩ cin 3944   βŠ† wss 3945  βˆ…c0 4323  {csn 4629  dom cdm 5677  Fun wfun 6541   Fn wfn 6542  β€˜cfv 6547  (class class class)co 7417  β„•0*cxnn0 12574   +𝑒 cxad 13122  β™―chash 14321  Vtxcvtx 28865  iEdgciedg 28866  VtxDegcvtxdg 29335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-xadd 13125  df-hash 14322  df-vtxdg 29336
This theorem is referenced by:  vtxdfiun  29352  vtxduhgrun  29353  p1evtxdeqlem  29382
  Copyright terms: Public domain W3C validator