Step | Hyp | Ref
| Expression |
1 | | df-rab 3407 |
. . . . . . . 8
β’ {π₯ β dom (iEdgβπ) β£ π β ((iEdgβπ)βπ₯)} = {π₯ β£ (π₯ β dom (iEdgβπ) β§ π β ((iEdgβπ)βπ₯))} |
2 | | vtxdun.u |
. . . . . . . . . . . . . . 15
β’ (π β (iEdgβπ) = (πΌ βͺ π½)) |
3 | 2 | dmeqd 5865 |
. . . . . . . . . . . . . 14
β’ (π β dom (iEdgβπ) = dom (πΌ βͺ π½)) |
4 | | dmun 5870 |
. . . . . . . . . . . . . 14
β’ dom
(πΌ βͺ π½) = (dom πΌ βͺ dom π½) |
5 | 3, 4 | eqtrdi 2789 |
. . . . . . . . . . . . 13
β’ (π β dom (iEdgβπ) = (dom πΌ βͺ dom π½)) |
6 | 5 | eleq2d 2820 |
. . . . . . . . . . . 12
β’ (π β (π₯ β dom (iEdgβπ) β π₯ β (dom πΌ βͺ dom π½))) |
7 | | elun 4112 |
. . . . . . . . . . . 12
β’ (π₯ β (dom πΌ βͺ dom π½) β (π₯ β dom πΌ β¨ π₯ β dom π½)) |
8 | 6, 7 | bitrdi 287 |
. . . . . . . . . . 11
β’ (π β (π₯ β dom (iEdgβπ) β (π₯ β dom πΌ β¨ π₯ β dom π½))) |
9 | 8 | anbi1d 631 |
. . . . . . . . . 10
β’ (π β ((π₯ β dom (iEdgβπ) β§ π β ((iEdgβπ)βπ₯)) β ((π₯ β dom πΌ β¨ π₯ β dom π½) β§ π β ((iEdgβπ)βπ₯)))) |
10 | | andir 1008 |
. . . . . . . . . 10
β’ (((π₯ β dom πΌ β¨ π₯ β dom π½) β§ π β ((iEdgβπ)βπ₯)) β ((π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯)) β¨ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯)))) |
11 | 9, 10 | bitrdi 287 |
. . . . . . . . 9
β’ (π β ((π₯ β dom (iEdgβπ) β§ π β ((iEdgβπ)βπ₯)) β ((π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯)) β¨ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯))))) |
12 | 11 | abbidv 2802 |
. . . . . . . 8
β’ (π β {π₯ β£ (π₯ β dom (iEdgβπ) β§ π β ((iEdgβπ)βπ₯))} = {π₯ β£ ((π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯)) β¨ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯)))}) |
13 | 1, 12 | eqtrid 2785 |
. . . . . . 7
β’ (π β {π₯ β dom (iEdgβπ) β£ π β ((iEdgβπ)βπ₯)} = {π₯ β£ ((π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯)) β¨ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯)))}) |
14 | | unab 4262 |
. . . . . . . . 9
β’ ({π₯ β£ (π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯))} βͺ {π₯ β£ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯))}) = {π₯ β£ ((π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯)) β¨ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯)))} |
15 | 14 | eqcomi 2742 |
. . . . . . . 8
β’ {π₯ β£ ((π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯)) β¨ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯)))} = ({π₯ β£ (π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯))} βͺ {π₯ β£ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯))}) |
16 | 15 | a1i 11 |
. . . . . . 7
β’ (π β {π₯ β£ ((π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯)) β¨ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯)))} = ({π₯ β£ (π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯))} βͺ {π₯ β£ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯))})) |
17 | | df-rab 3407 |
. . . . . . . . 9
β’ {π₯ β dom πΌ β£ π β ((iEdgβπ)βπ₯)} = {π₯ β£ (π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯))} |
18 | 2 | fveq1d 6848 |
. . . . . . . . . . . . 13
β’ (π β ((iEdgβπ)βπ₯) = ((πΌ βͺ π½)βπ₯)) |
19 | 18 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β dom πΌ) β ((iEdgβπ)βπ₯) = ((πΌ βͺ π½)βπ₯)) |
20 | | vtxdun.fi |
. . . . . . . . . . . . . . 15
β’ (π β Fun πΌ) |
21 | 20 | funfnd 6536 |
. . . . . . . . . . . . . 14
β’ (π β πΌ Fn dom πΌ) |
22 | 21 | adantr 482 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β dom πΌ) β πΌ Fn dom πΌ) |
23 | | vtxdun.fj |
. . . . . . . . . . . . . . 15
β’ (π β Fun π½) |
24 | 23 | funfnd 6536 |
. . . . . . . . . . . . . 14
β’ (π β π½ Fn dom π½) |
25 | 24 | adantr 482 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β dom πΌ) β π½ Fn dom π½) |
26 | | vtxdun.d |
. . . . . . . . . . . . . 14
β’ (π β (dom πΌ β© dom π½) = β
) |
27 | 26 | anim1i 616 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β dom πΌ) β ((dom πΌ β© dom π½) = β
β§ π₯ β dom πΌ)) |
28 | | fvun1 6936 |
. . . . . . . . . . . . 13
β’ ((πΌ Fn dom πΌ β§ π½ Fn dom π½ β§ ((dom πΌ β© dom π½) = β
β§ π₯ β dom πΌ)) β ((πΌ βͺ π½)βπ₯) = (πΌβπ₯)) |
29 | 22, 25, 27, 28 | syl3anc 1372 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β dom πΌ) β ((πΌ βͺ π½)βπ₯) = (πΌβπ₯)) |
30 | 19, 29 | eqtrd 2773 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β dom πΌ) β ((iEdgβπ)βπ₯) = (πΌβπ₯)) |
31 | 30 | eleq2d 2820 |
. . . . . . . . . 10
β’ ((π β§ π₯ β dom πΌ) β (π β ((iEdgβπ)βπ₯) β π β (πΌβπ₯))) |
32 | 31 | rabbidva 3413 |
. . . . . . . . 9
β’ (π β {π₯ β dom πΌ β£ π β ((iEdgβπ)βπ₯)} = {π₯ β dom πΌ β£ π β (πΌβπ₯)}) |
33 | 17, 32 | eqtr3id 2787 |
. . . . . . . 8
β’ (π β {π₯ β£ (π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯))} = {π₯ β dom πΌ β£ π β (πΌβπ₯)}) |
34 | | df-rab 3407 |
. . . . . . . . 9
β’ {π₯ β dom π½ β£ π β ((iEdgβπ)βπ₯)} = {π₯ β£ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯))} |
35 | 18 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β dom π½) β ((iEdgβπ)βπ₯) = ((πΌ βͺ π½)βπ₯)) |
36 | 21 | adantr 482 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β dom π½) β πΌ Fn dom πΌ) |
37 | 24 | adantr 482 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β dom π½) β π½ Fn dom π½) |
38 | 26 | anim1i 616 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β dom π½) β ((dom πΌ β© dom π½) = β
β§ π₯ β dom π½)) |
39 | | fvun2 6937 |
. . . . . . . . . . . . 13
β’ ((πΌ Fn dom πΌ β§ π½ Fn dom π½ β§ ((dom πΌ β© dom π½) = β
β§ π₯ β dom π½)) β ((πΌ βͺ π½)βπ₯) = (π½βπ₯)) |
40 | 36, 37, 38, 39 | syl3anc 1372 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β dom π½) β ((πΌ βͺ π½)βπ₯) = (π½βπ₯)) |
41 | 35, 40 | eqtrd 2773 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β dom π½) β ((iEdgβπ)βπ₯) = (π½βπ₯)) |
42 | 41 | eleq2d 2820 |
. . . . . . . . . 10
β’ ((π β§ π₯ β dom π½) β (π β ((iEdgβπ)βπ₯) β π β (π½βπ₯))) |
43 | 42 | rabbidva 3413 |
. . . . . . . . 9
β’ (π β {π₯ β dom π½ β£ π β ((iEdgβπ)βπ₯)} = {π₯ β dom π½ β£ π β (π½βπ₯)}) |
44 | 34, 43 | eqtr3id 2787 |
. . . . . . . 8
β’ (π β {π₯ β£ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯))} = {π₯ β dom π½ β£ π β (π½βπ₯)}) |
45 | 33, 44 | uneq12d 4128 |
. . . . . . 7
β’ (π β ({π₯ β£ (π₯ β dom πΌ β§ π β ((iEdgβπ)βπ₯))} βͺ {π₯ β£ (π₯ β dom π½ β§ π β ((iEdgβπ)βπ₯))}) = ({π₯ β dom πΌ β£ π β (πΌβπ₯)} βͺ {π₯ β dom π½ β£ π β (π½βπ₯)})) |
46 | 13, 16, 45 | 3eqtrd 2777 |
. . . . . 6
β’ (π β {π₯ β dom (iEdgβπ) β£ π β ((iEdgβπ)βπ₯)} = ({π₯ β dom πΌ β£ π β (πΌβπ₯)} βͺ {π₯ β dom π½ β£ π β (π½βπ₯)})) |
47 | 46 | fveq2d 6850 |
. . . . 5
β’ (π β (β―β{π₯ β dom (iEdgβπ) β£ π β ((iEdgβπ)βπ₯)}) = (β―β({π₯ β dom πΌ β£ π β (πΌβπ₯)} βͺ {π₯ β dom π½ β£ π β (π½βπ₯)}))) |
48 | | vtxdun.i |
. . . . . . . . . 10
β’ πΌ = (iEdgβπΊ) |
49 | 48 | fvexi 6860 |
. . . . . . . . 9
β’ πΌ β V |
50 | 49 | dmex 7852 |
. . . . . . . 8
β’ dom πΌ β V |
51 | 50 | rabex 5293 |
. . . . . . 7
β’ {π₯ β dom πΌ β£ π β (πΌβπ₯)} β V |
52 | 51 | a1i 11 |
. . . . . 6
β’ (π β {π₯ β dom πΌ β£ π β (πΌβπ₯)} β V) |
53 | | vtxdun.j |
. . . . . . . . . 10
β’ π½ = (iEdgβπ») |
54 | 53 | fvexi 6860 |
. . . . . . . . 9
β’ π½ β V |
55 | 54 | dmex 7852 |
. . . . . . . 8
β’ dom π½ β V |
56 | 55 | rabex 5293 |
. . . . . . 7
β’ {π₯ β dom π½ β£ π β (π½βπ₯)} β V |
57 | 56 | a1i 11 |
. . . . . 6
β’ (π β {π₯ β dom π½ β£ π β (π½βπ₯)} β V) |
58 | | ssrab2 4041 |
. . . . . . . . 9
β’ {π₯ β dom πΌ β£ π β (πΌβπ₯)} β dom πΌ |
59 | | ssrab2 4041 |
. . . . . . . . 9
β’ {π₯ β dom π½ β£ π β (π½βπ₯)} β dom π½ |
60 | | ss2in 4200 |
. . . . . . . . 9
β’ (({π₯ β dom πΌ β£ π β (πΌβπ₯)} β dom πΌ β§ {π₯ β dom π½ β£ π β (π½βπ₯)} β dom π½) β ({π₯ β dom πΌ β£ π β (πΌβπ₯)} β© {π₯ β dom π½ β£ π β (π½βπ₯)}) β (dom πΌ β© dom π½)) |
61 | 58, 59, 60 | mp2an 691 |
. . . . . . . 8
β’ ({π₯ β dom πΌ β£ π β (πΌβπ₯)} β© {π₯ β dom π½ β£ π β (π½βπ₯)}) β (dom πΌ β© dom π½) |
62 | 61, 26 | sseqtrid 4000 |
. . . . . . 7
β’ (π β ({π₯ β dom πΌ β£ π β (πΌβπ₯)} β© {π₯ β dom π½ β£ π β (π½βπ₯)}) β β
) |
63 | | ss0 4362 |
. . . . . . 7
β’ (({π₯ β dom πΌ β£ π β (πΌβπ₯)} β© {π₯ β dom π½ β£ π β (π½βπ₯)}) β β
β ({π₯ β dom πΌ β£ π β (πΌβπ₯)} β© {π₯ β dom π½ β£ π β (π½βπ₯)}) = β
) |
64 | 62, 63 | syl 17 |
. . . . . 6
β’ (π β ({π₯ β dom πΌ β£ π β (πΌβπ₯)} β© {π₯ β dom π½ β£ π β (π½βπ₯)}) = β
) |
65 | | hashunx 14295 |
. . . . . 6
β’ (({π₯ β dom πΌ β£ π β (πΌβπ₯)} β V β§ {π₯ β dom π½ β£ π β (π½βπ₯)} β V β§ ({π₯ β dom πΌ β£ π β (πΌβπ₯)} β© {π₯ β dom π½ β£ π β (π½βπ₯)}) = β
) β (β―β({π₯ β dom πΌ β£ π β (πΌβπ₯)} βͺ {π₯ β dom π½ β£ π β (π½βπ₯)})) = ((β―β{π₯ β dom πΌ β£ π β (πΌβπ₯)}) +π
(β―β{π₯ β
dom π½ β£ π β (π½βπ₯)}))) |
66 | 52, 57, 64, 65 | syl3anc 1372 |
. . . . 5
β’ (π β (β―β({π₯ β dom πΌ β£ π β (πΌβπ₯)} βͺ {π₯ β dom π½ β£ π β (π½βπ₯)})) = ((β―β{π₯ β dom πΌ β£ π β (πΌβπ₯)}) +π
(β―β{π₯ β
dom π½ β£ π β (π½βπ₯)}))) |
67 | 47, 66 | eqtrd 2773 |
. . . 4
β’ (π β (β―β{π₯ β dom (iEdgβπ) β£ π β ((iEdgβπ)βπ₯)}) = ((β―β{π₯ β dom πΌ β£ π β (πΌβπ₯)}) +π
(β―β{π₯ β
dom π½ β£ π β (π½βπ₯)}))) |
68 | | df-rab 3407 |
. . . . . . . 8
β’ {π₯ β dom (iEdgβπ) β£ ((iEdgβπ)βπ₯) = {π}} = {π₯ β£ (π₯ β dom (iEdgβπ) β§ ((iEdgβπ)βπ₯) = {π})} |
69 | 8 | anbi1d 631 |
. . . . . . . . . 10
β’ (π β ((π₯ β dom (iEdgβπ) β§ ((iEdgβπ)βπ₯) = {π}) β ((π₯ β dom πΌ β¨ π₯ β dom π½) β§ ((iEdgβπ)βπ₯) = {π}))) |
70 | | andir 1008 |
. . . . . . . . . 10
β’ (((π₯ β dom πΌ β¨ π₯ β dom π½) β§ ((iEdgβπ)βπ₯) = {π}) β ((π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π}) β¨ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π}))) |
71 | 69, 70 | bitrdi 287 |
. . . . . . . . 9
β’ (π β ((π₯ β dom (iEdgβπ) β§ ((iEdgβπ)βπ₯) = {π}) β ((π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π}) β¨ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π})))) |
72 | 71 | abbidv 2802 |
. . . . . . . 8
β’ (π β {π₯ β£ (π₯ β dom (iEdgβπ) β§ ((iEdgβπ)βπ₯) = {π})} = {π₯ β£ ((π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π}) β¨ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π}))}) |
73 | 68, 72 | eqtrid 2785 |
. . . . . . 7
β’ (π β {π₯ β dom (iEdgβπ) β£ ((iEdgβπ)βπ₯) = {π}} = {π₯ β£ ((π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π}) β¨ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π}))}) |
74 | | unab 4262 |
. . . . . . . . 9
β’ ({π₯ β£ (π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π})} βͺ {π₯ β£ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π})}) = {π₯ β£ ((π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π}) β¨ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π}))} |
75 | 74 | eqcomi 2742 |
. . . . . . . 8
β’ {π₯ β£ ((π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π}) β¨ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π}))} = ({π₯ β£ (π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π})} βͺ {π₯ β£ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π})}) |
76 | 75 | a1i 11 |
. . . . . . 7
β’ (π β {π₯ β£ ((π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π}) β¨ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π}))} = ({π₯ β£ (π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π})} βͺ {π₯ β£ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π})})) |
77 | | df-rab 3407 |
. . . . . . . . 9
β’ {π₯ β dom πΌ β£ ((iEdgβπ)βπ₯) = {π}} = {π₯ β£ (π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π})} |
78 | 30 | eqeq1d 2735 |
. . . . . . . . . 10
β’ ((π β§ π₯ β dom πΌ) β (((iEdgβπ)βπ₯) = {π} β (πΌβπ₯) = {π})) |
79 | 78 | rabbidva 3413 |
. . . . . . . . 9
β’ (π β {π₯ β dom πΌ β£ ((iEdgβπ)βπ₯) = {π}} = {π₯ β dom πΌ β£ (πΌβπ₯) = {π}}) |
80 | 77, 79 | eqtr3id 2787 |
. . . . . . . 8
β’ (π β {π₯ β£ (π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π})} = {π₯ β dom πΌ β£ (πΌβπ₯) = {π}}) |
81 | | df-rab 3407 |
. . . . . . . . 9
β’ {π₯ β dom π½ β£ ((iEdgβπ)βπ₯) = {π}} = {π₯ β£ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π})} |
82 | 41 | eqeq1d 2735 |
. . . . . . . . . 10
β’ ((π β§ π₯ β dom π½) β (((iEdgβπ)βπ₯) = {π} β (π½βπ₯) = {π})) |
83 | 82 | rabbidva 3413 |
. . . . . . . . 9
β’ (π β {π₯ β dom π½ β£ ((iEdgβπ)βπ₯) = {π}} = {π₯ β dom π½ β£ (π½βπ₯) = {π}}) |
84 | 81, 83 | eqtr3id 2787 |
. . . . . . . 8
β’ (π β {π₯ β£ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π})} = {π₯ β dom π½ β£ (π½βπ₯) = {π}}) |
85 | 80, 84 | uneq12d 4128 |
. . . . . . 7
β’ (π β ({π₯ β£ (π₯ β dom πΌ β§ ((iEdgβπ)βπ₯) = {π})} βͺ {π₯ β£ (π₯ β dom π½ β§ ((iEdgβπ)βπ₯) = {π})}) = ({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} βͺ {π₯ β dom π½ β£ (π½βπ₯) = {π}})) |
86 | 73, 76, 85 | 3eqtrd 2777 |
. . . . . 6
β’ (π β {π₯ β dom (iEdgβπ) β£ ((iEdgβπ)βπ₯) = {π}} = ({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} βͺ {π₯ β dom π½ β£ (π½βπ₯) = {π}})) |
87 | 86 | fveq2d 6850 |
. . . . 5
β’ (π β (β―β{π₯ β dom (iEdgβπ) β£ ((iEdgβπ)βπ₯) = {π}}) = (β―β({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} βͺ {π₯ β dom π½ β£ (π½βπ₯) = {π}}))) |
88 | 50 | rabex 5293 |
. . . . . . 7
β’ {π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β V |
89 | 88 | a1i 11 |
. . . . . 6
β’ (π β {π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β V) |
90 | 55 | rabex 5293 |
. . . . . . 7
β’ {π₯ β dom π½ β£ (π½βπ₯) = {π}} β V |
91 | 90 | a1i 11 |
. . . . . 6
β’ (π β {π₯ β dom π½ β£ (π½βπ₯) = {π}} β V) |
92 | | ssrab2 4041 |
. . . . . . . . 9
β’ {π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β dom πΌ |
93 | | ssrab2 4041 |
. . . . . . . . 9
β’ {π₯ β dom π½ β£ (π½βπ₯) = {π}} β dom π½ |
94 | | ss2in 4200 |
. . . . . . . . 9
β’ (({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β dom πΌ β§ {π₯ β dom π½ β£ (π½βπ₯) = {π}} β dom π½) β ({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β© {π₯ β dom π½ β£ (π½βπ₯) = {π}}) β (dom πΌ β© dom π½)) |
95 | 92, 93, 94 | mp2an 691 |
. . . . . . . 8
β’ ({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β© {π₯ β dom π½ β£ (π½βπ₯) = {π}}) β (dom πΌ β© dom π½) |
96 | 95, 26 | sseqtrid 4000 |
. . . . . . 7
β’ (π β ({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β© {π₯ β dom π½ β£ (π½βπ₯) = {π}}) β β
) |
97 | | ss0 4362 |
. . . . . . 7
β’ (({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β© {π₯ β dom π½ β£ (π½βπ₯) = {π}}) β β
β ({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β© {π₯ β dom π½ β£ (π½βπ₯) = {π}}) = β
) |
98 | 96, 97 | syl 17 |
. . . . . 6
β’ (π β ({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β© {π₯ β dom π½ β£ (π½βπ₯) = {π}}) = β
) |
99 | | hashunx 14295 |
. . . . . 6
β’ (({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β V β§ {π₯ β dom π½ β£ (π½βπ₯) = {π}} β V β§ ({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β© {π₯ β dom π½ β£ (π½βπ₯) = {π}}) = β
) β (β―β({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} βͺ {π₯ β dom π½ β£ (π½βπ₯) = {π}})) = ((β―β{π₯ β dom πΌ β£ (πΌβπ₯) = {π}}) +π
(β―β{π₯ β
dom π½ β£ (π½βπ₯) = {π}}))) |
100 | 89, 91, 98, 99 | syl3anc 1372 |
. . . . 5
β’ (π β (β―β({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} βͺ {π₯ β dom π½ β£ (π½βπ₯) = {π}})) = ((β―β{π₯ β dom πΌ β£ (πΌβπ₯) = {π}}) +π
(β―β{π₯ β
dom π½ β£ (π½βπ₯) = {π}}))) |
101 | 87, 100 | eqtrd 2773 |
. . . 4
β’ (π β (β―β{π₯ β dom (iEdgβπ) β£ ((iEdgβπ)βπ₯) = {π}}) = ((β―β{π₯ β dom πΌ β£ (πΌβπ₯) = {π}}) +π
(β―β{π₯ β
dom π½ β£ (π½βπ₯) = {π}}))) |
102 | 67, 101 | oveq12d 7379 |
. . 3
β’ (π β ((β―β{π₯ β dom (iEdgβπ) β£ π β ((iEdgβπ)βπ₯)}) +π
(β―β{π₯ β
dom (iEdgβπ) β£
((iEdgβπ)βπ₯) = {π}})) = (((β―β{π₯ β dom πΌ β£ π β (πΌβπ₯)}) +π
(β―β{π₯ β
dom π½ β£ π β (π½βπ₯)})) +π
((β―β{π₯ β
dom πΌ β£ (πΌβπ₯) = {π}}) +π
(β―β{π₯ β
dom π½ β£ (π½βπ₯) = {π}})))) |
103 | | hashxnn0 14248 |
. . . . 5
β’ ({π₯ β dom πΌ β£ π β (πΌβπ₯)} β V β (β―β{π₯ β dom πΌ β£ π β (πΌβπ₯)}) β
β0*) |
104 | 52, 103 | syl 17 |
. . . 4
β’ (π β (β―β{π₯ β dom πΌ β£ π β (πΌβπ₯)}) β
β0*) |
105 | | hashxnn0 14248 |
. . . . 5
β’ ({π₯ β dom π½ β£ π β (π½βπ₯)} β V β (β―β{π₯ β dom π½ β£ π β (π½βπ₯)}) β
β0*) |
106 | 57, 105 | syl 17 |
. . . 4
β’ (π β (β―β{π₯ β dom π½ β£ π β (π½βπ₯)}) β
β0*) |
107 | | hashxnn0 14248 |
. . . . 5
β’ ({π₯ β dom πΌ β£ (πΌβπ₯) = {π}} β V β (β―β{π₯ β dom πΌ β£ (πΌβπ₯) = {π}}) β
β0*) |
108 | 89, 107 | syl 17 |
. . . 4
β’ (π β (β―β{π₯ β dom πΌ β£ (πΌβπ₯) = {π}}) β
β0*) |
109 | | hashxnn0 14248 |
. . . . 5
β’ ({π₯ β dom π½ β£ (π½βπ₯) = {π}} β V β (β―β{π₯ β dom π½ β£ (π½βπ₯) = {π}}) β
β0*) |
110 | 91, 109 | syl 17 |
. . . 4
β’ (π β (β―β{π₯ β dom π½ β£ (π½βπ₯) = {π}}) β
β0*) |
111 | 104, 106,
108, 110 | xnn0add4d 13232 |
. . 3
β’ (π β (((β―β{π₯ β dom πΌ β£ π β (πΌβπ₯)}) +π
(β―β{π₯ β
dom π½ β£ π β (π½βπ₯)})) +π
((β―β{π₯ β
dom πΌ β£ (πΌβπ₯) = {π}}) +π
(β―β{π₯ β
dom π½ β£ (π½βπ₯) = {π}}))) = (((β―β{π₯ β dom πΌ β£ π β (πΌβπ₯)}) +π
(β―β{π₯ β
dom πΌ β£ (πΌβπ₯) = {π}})) +π
((β―β{π₯ β
dom π½ β£ π β (π½βπ₯)}) +π
(β―β{π₯ β
dom π½ β£ (π½βπ₯) = {π}})))) |
112 | 102, 111 | eqtrd 2773 |
. 2
β’ (π β ((β―β{π₯ β dom (iEdgβπ) β£ π β ((iEdgβπ)βπ₯)}) +π
(β―β{π₯ β
dom (iEdgβπ) β£
((iEdgβπ)βπ₯) = {π}})) = (((β―β{π₯ β dom πΌ β£ π β (πΌβπ₯)}) +π
(β―β{π₯ β
dom πΌ β£ (πΌβπ₯) = {π}})) +π
((β―β{π₯ β
dom π½ β£ π β (π½βπ₯)}) +π
(β―β{π₯ β
dom π½ β£ (π½βπ₯) = {π}})))) |
113 | | vtxdun.n |
. . . 4
β’ (π β π β π) |
114 | | vtxdun.vu |
. . . 4
β’ (π β (Vtxβπ) = π) |
115 | 113, 114 | eleqtrrd 2837 |
. . 3
β’ (π β π β (Vtxβπ)) |
116 | | eqid 2733 |
. . . 4
β’
(Vtxβπ) =
(Vtxβπ) |
117 | | eqid 2733 |
. . . 4
β’
(iEdgβπ) =
(iEdgβπ) |
118 | | eqid 2733 |
. . . 4
β’ dom
(iEdgβπ) = dom
(iEdgβπ) |
119 | 116, 117,
118 | vtxdgval 28465 |
. . 3
β’ (π β (Vtxβπ) β ((VtxDegβπ)βπ) = ((β―β{π₯ β dom (iEdgβπ) β£ π β ((iEdgβπ)βπ₯)}) +π
(β―β{π₯ β
dom (iEdgβπ) β£
((iEdgβπ)βπ₯) = {π}}))) |
120 | 115, 119 | syl 17 |
. 2
β’ (π β ((VtxDegβπ)βπ) = ((β―β{π₯ β dom (iEdgβπ) β£ π β ((iEdgβπ)βπ₯)}) +π
(β―β{π₯ β
dom (iEdgβπ) β£
((iEdgβπ)βπ₯) = {π}}))) |
121 | | vtxdun.vg |
. . . . 5
β’ π = (VtxβπΊ) |
122 | | eqid 2733 |
. . . . 5
β’ dom πΌ = dom πΌ |
123 | 121, 48, 122 | vtxdgval 28465 |
. . . 4
β’ (π β π β ((VtxDegβπΊ)βπ) = ((β―β{π₯ β dom πΌ β£ π β (πΌβπ₯)}) +π
(β―β{π₯ β
dom πΌ β£ (πΌβπ₯) = {π}}))) |
124 | 113, 123 | syl 17 |
. . 3
β’ (π β ((VtxDegβπΊ)βπ) = ((β―β{π₯ β dom πΌ β£ π β (πΌβπ₯)}) +π
(β―β{π₯ β
dom πΌ β£ (πΌβπ₯) = {π}}))) |
125 | | vtxdun.vh |
. . . . 5
β’ (π β (Vtxβπ») = π) |
126 | 113, 125 | eleqtrrd 2837 |
. . . 4
β’ (π β π β (Vtxβπ»)) |
127 | | eqid 2733 |
. . . . 5
β’
(Vtxβπ») =
(Vtxβπ») |
128 | | eqid 2733 |
. . . . 5
β’ dom π½ = dom π½ |
129 | 127, 53, 128 | vtxdgval 28465 |
. . . 4
β’ (π β (Vtxβπ») β ((VtxDegβπ»)βπ) = ((β―β{π₯ β dom π½ β£ π β (π½βπ₯)}) +π
(β―β{π₯ β
dom π½ β£ (π½βπ₯) = {π}}))) |
130 | 126, 129 | syl 17 |
. . 3
β’ (π β ((VtxDegβπ»)βπ) = ((β―β{π₯ β dom π½ β£ π β (π½βπ₯)}) +π
(β―β{π₯ β
dom π½ β£ (π½βπ₯) = {π}}))) |
131 | 124, 130 | oveq12d 7379 |
. 2
β’ (π β (((VtxDegβπΊ)βπ) +π ((VtxDegβπ»)βπ)) = (((β―β{π₯ β dom πΌ β£ π β (πΌβπ₯)}) +π
(β―β{π₯ β
dom πΌ β£ (πΌβπ₯) = {π}})) +π
((β―β{π₯ β
dom π½ β£ π β (π½βπ₯)}) +π
(β―β{π₯ β
dom π½ β£ (π½βπ₯) = {π}})))) |
132 | 112, 120,
131 | 3eqtr4d 2783 |
1
β’ (π β ((VtxDegβπ)βπ) = (((VtxDegβπΊ)βπ) +π ((VtxDegβπ»)βπ))) |