Step | Hyp | Ref
| Expression |
1 | | df-rab 3096 |
. . . . . . . 8
⊢ {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} |
2 | | vtxdun.u |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) |
3 | 2 | dmeqd 5527 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom (iEdg‘𝑈) = dom (𝐼 ∪ 𝐽)) |
4 | | dmun 5532 |
. . . . . . . . . . . . . 14
⊢ dom
(𝐼 ∪ 𝐽) = (dom 𝐼 ∪ dom 𝐽) |
5 | 3, 4 | syl6eq 2847 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom (iEdg‘𝑈) = (dom 𝐼 ∪ dom 𝐽)) |
6 | 5 | eleq2d 2862 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ dom (iEdg‘𝑈) ↔ 𝑥 ∈ (dom 𝐼 ∪ dom 𝐽))) |
7 | | elun 3949 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (dom 𝐼 ∪ dom 𝐽) ↔ (𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽)) |
8 | 6, 7 | syl6bb 279 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ dom (iEdg‘𝑈) ↔ (𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽))) |
9 | 8 | anbi1d 624 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))) |
10 | | andir 1032 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))) |
11 | 9, 10 | syl6bb 279 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))))) |
12 | 11 | abbidv 2916 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))}) |
13 | 1, 12 | syl5eq 2843 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))}) |
14 | | unab 4092 |
. . . . . . . . 9
⊢ ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} |
15 | 14 | eqcomi 2806 |
. . . . . . . 8
⊢ {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) |
16 | 15 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))})) |
17 | | df-rab 3096 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} |
18 | 2 | fveq1d 6411 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((iEdg‘𝑈)‘𝑥) = ((𝐼 ∪ 𝐽)‘𝑥)) |
19 | 18 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → ((iEdg‘𝑈)‘𝑥) = ((𝐼 ∪ 𝐽)‘𝑥)) |
20 | | vtxdun.fi |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Fun 𝐼) |
21 | | funfn 6129 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝐼 ↔ 𝐼 Fn dom 𝐼) |
22 | 20, 21 | sylib 210 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
23 | 22 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼) |
24 | | vtxdun.fj |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Fun 𝐽) |
25 | | funfn 6129 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝐽 ↔ 𝐽 Fn dom 𝐽) |
26 | 24, 25 | sylib 210 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐽 Fn dom 𝐽) |
27 | 26 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → 𝐽 Fn dom 𝐽) |
28 | | vtxdun.d |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) |
29 | 28 | anim1i 609 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐼)) |
30 | | fvun1 6492 |
. . . . . . . . . . . . 13
⊢ ((𝐼 Fn dom 𝐼 ∧ 𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐼)) → ((𝐼 ∪ 𝐽)‘𝑥) = (𝐼‘𝑥)) |
31 | 23, 27, 29, 30 | syl3anc 1491 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → ((𝐼 ∪ 𝐽)‘𝑥) = (𝐼‘𝑥)) |
32 | 19, 31 | eqtrd 2831 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → ((iEdg‘𝑈)‘𝑥) = (𝐼‘𝑥)) |
33 | 32 | eleq2d 2862 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → (𝑁 ∈ ((iEdg‘𝑈)‘𝑥) ↔ 𝑁 ∈ (𝐼‘𝑥))) |
34 | 33 | rabbidva 3370 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) |
35 | 17, 34 | syl5eqr 2845 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) |
36 | | df-rab 3096 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} |
37 | 18 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → ((iEdg‘𝑈)‘𝑥) = ((𝐼 ∪ 𝐽)‘𝑥)) |
38 | 22 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → 𝐼 Fn dom 𝐼) |
39 | 26 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → 𝐽 Fn dom 𝐽) |
40 | 28 | anim1i 609 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐽)) |
41 | | fvun2 6493 |
. . . . . . . . . . . . 13
⊢ ((𝐼 Fn dom 𝐼 ∧ 𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐽)) → ((𝐼 ∪ 𝐽)‘𝑥) = (𝐽‘𝑥)) |
42 | 38, 39, 40, 41 | syl3anc 1491 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → ((𝐼 ∪ 𝐽)‘𝑥) = (𝐽‘𝑥)) |
43 | 37, 42 | eqtrd 2831 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → ((iEdg‘𝑈)‘𝑥) = (𝐽‘𝑥)) |
44 | 43 | eleq2d 2862 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → (𝑁 ∈ ((iEdg‘𝑈)‘𝑥) ↔ 𝑁 ∈ (𝐽‘𝑥))) |
45 | 44 | rabbidva 3370 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) |
46 | 36, 45 | syl5eqr 2845 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) |
47 | 35, 46 | uneq12d 3964 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) = ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∪ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)})) |
48 | 13, 16, 47 | 3eqtrd 2835 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∪ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)})) |
49 | 48 | fveq2d 6413 |
. . . . 5
⊢ (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) = (♯‘({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∪ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}))) |
50 | | vtxdun.i |
. . . . . . . . . 10
⊢ 𝐼 = (iEdg‘𝐺) |
51 | 50 | fvexi 6423 |
. . . . . . . . 9
⊢ 𝐼 ∈ V |
52 | 51 | dmex 7332 |
. . . . . . . 8
⊢ dom 𝐼 ∈ V |
53 | 52 | rabex 5005 |
. . . . . . 7
⊢ {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∈ V |
54 | 53 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∈ V) |
55 | | vtxdun.j |
. . . . . . . . . 10
⊢ 𝐽 = (iEdg‘𝐻) |
56 | 55 | fvexi 6423 |
. . . . . . . . 9
⊢ 𝐽 ∈ V |
57 | 56 | dmex 7332 |
. . . . . . . 8
⊢ dom 𝐽 ∈ V |
58 | 57 | rabex 5005 |
. . . . . . 7
⊢ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)} ∈ V |
59 | 58 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)} ∈ V) |
60 | | ssrab2 3881 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ⊆ dom 𝐼 |
61 | | ssrab2 3881 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)} ⊆ dom 𝐽 |
62 | | ss2in 4034 |
. . . . . . . . 9
⊢ (({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ⊆ dom 𝐼 ∧ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)} ⊆ dom 𝐽) → ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) ⊆ (dom 𝐼 ∩ dom 𝐽)) |
63 | 60, 61, 62 | mp2an 684 |
. . . . . . . 8
⊢ ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) ⊆ (dom 𝐼 ∩ dom 𝐽) |
64 | 63, 28 | syl5sseq 3847 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) ⊆ ∅) |
65 | | ss0 4168 |
. . . . . . 7
⊢ (({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) ⊆ ∅ → ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) = ∅) |
66 | 64, 65 | syl 17 |
. . . . . 6
⊢ (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) = ∅) |
67 | | hashunx 13421 |
. . . . . 6
⊢ (({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∈ V ∧ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)} ∈ V ∧ ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) = ∅) → (♯‘({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∪ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)})) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}))) |
68 | 54, 59, 66, 67 | syl3anc 1491 |
. . . . 5
⊢ (𝜑 → (♯‘({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∪ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)})) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}))) |
69 | 49, 68 | eqtrd 2831 |
. . . 4
⊢ (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}))) |
70 | | df-rab 3096 |
. . . . . . . 8
⊢ {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} |
71 | 8 | anbi1d 624 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))) |
72 | | andir 1032 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))) |
73 | 71, 72 | syl6bb 279 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})))) |
74 | 73 | abbidv 2916 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))}) |
75 | 70, 74 | syl5eq 2843 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))}) |
76 | | unab 4092 |
. . . . . . . . 9
⊢ ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} |
77 | 76 | eqcomi 2806 |
. . . . . . . 8
⊢ {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) |
78 | 77 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})})) |
79 | | df-rab 3096 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐼 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} |
80 | 32 | eqeq1d 2799 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → (((iEdg‘𝑈)‘𝑥) = {𝑁} ↔ (𝐼‘𝑥) = {𝑁})) |
81 | 80 | rabbidva 3370 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∈ dom 𝐼 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) |
82 | 79, 81 | syl5eqr 2845 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) |
83 | | df-rab 3096 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐽 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} |
84 | 43 | eqeq1d 2799 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → (((iEdg‘𝑈)‘𝑥) = {𝑁} ↔ (𝐽‘𝑥) = {𝑁})) |
85 | 84 | rabbidva 3370 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∈ dom 𝐽 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) |
86 | 83, 85 | syl5eqr 2845 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) |
87 | 82, 86 | uneq12d 3964 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) = ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})) |
88 | 75, 78, 87 | 3eqtrd 2835 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})) |
89 | 88 | fveq2d 6413 |
. . . . 5
⊢ (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}) = (♯‘({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) |
90 | 52 | rabex 5005 |
. . . . . . 7
⊢ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∈ V |
91 | 90 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∈ V) |
92 | 57 | rabex 5005 |
. . . . . . 7
⊢ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}} ∈ V |
93 | 92 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}} ∈ V) |
94 | | ssrab2 3881 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ⊆ dom 𝐼 |
95 | | ssrab2 3881 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}} ⊆ dom 𝐽 |
96 | | ss2in 4034 |
. . . . . . . . 9
⊢ (({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ⊆ dom 𝐼 ∧ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}} ⊆ dom 𝐽) → ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) ⊆ (dom 𝐼 ∩ dom 𝐽)) |
97 | 94, 95, 96 | mp2an 684 |
. . . . . . . 8
⊢ ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) ⊆ (dom 𝐼 ∩ dom 𝐽) |
98 | 97, 28 | syl5sseq 3847 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) ⊆ ∅) |
99 | | ss0 4168 |
. . . . . . 7
⊢ (({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) ⊆ ∅ → ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) = ∅) |
100 | 98, 99 | syl 17 |
. . . . . 6
⊢ (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) = ∅) |
101 | | hashunx 13421 |
. . . . . 6
⊢ (({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∈ V ∧ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}} ∈ V ∧ ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) = ∅) → (♯‘({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) |
102 | 91, 93, 100, 101 | syl3anc 1491 |
. . . . 5
⊢ (𝜑 → (♯‘({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) |
103 | 89, 102 | eqtrd 2831 |
. . . 4
⊢ (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) |
104 | 69, 103 | oveq12d 6894 |
. . 3
⊢ (𝜑 → ((♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom (iEdg‘𝑈) ∣
((iEdg‘𝑈)‘𝑥) = {𝑁}})) = (((♯‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)})) +𝑒
((♯‘{𝑥 ∈
dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})))) |
105 | | hashxnn0 13375 |
. . . . 5
⊢ ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∈ V → (♯‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) ∈
ℕ0*) |
106 | 54, 105 | syl 17 |
. . . 4
⊢ (𝜑 → (♯‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) ∈
ℕ0*) |
107 | | hashxnn0 13375 |
. . . . 5
⊢ ({𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)} ∈ V → (♯‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) ∈
ℕ0*) |
108 | 59, 107 | syl 17 |
. . . 4
⊢ (𝜑 → (♯‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) ∈
ℕ0*) |
109 | | hashxnn0 13375 |
. . . . 5
⊢ ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∈ V → (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) ∈
ℕ0*) |
110 | 91, 109 | syl 17 |
. . . 4
⊢ (𝜑 → (♯‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) ∈
ℕ0*) |
111 | | hashxnn0 13375 |
. . . . 5
⊢ ({𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}} ∈ V → (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) ∈
ℕ0*) |
112 | 93, 111 | syl 17 |
. . . 4
⊢ (𝜑 → (♯‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) ∈
ℕ0*) |
113 | 106, 108,
110, 112 | xnn0add4d 12379 |
. . 3
⊢ (𝜑 → (((♯‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)})) +𝑒
((♯‘{𝑥 ∈
dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) = (((♯‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}})) +𝑒
((♯‘{𝑥 ∈
dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})))) |
114 | 104, 113 | eqtrd 2831 |
. 2
⊢ (𝜑 → ((♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom (iEdg‘𝑈) ∣
((iEdg‘𝑈)‘𝑥) = {𝑁}})) = (((♯‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}})) +𝑒
((♯‘{𝑥 ∈
dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})))) |
115 | | vtxdun.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ 𝑉) |
116 | | vtxdun.vu |
. . . 4
⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
117 | 115, 116 | eleqtrrd 2879 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (Vtx‘𝑈)) |
118 | | eqid 2797 |
. . . 4
⊢
(Vtx‘𝑈) =
(Vtx‘𝑈) |
119 | | eqid 2797 |
. . . 4
⊢
(iEdg‘𝑈) =
(iEdg‘𝑈) |
120 | | eqid 2797 |
. . . 4
⊢ dom
(iEdg‘𝑈) = dom
(iEdg‘𝑈) |
121 | 118, 119,
120 | vtxdgval 26710 |
. . 3
⊢ (𝑁 ∈ (Vtx‘𝑈) → ((VtxDeg‘𝑈)‘𝑁) = ((♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom (iEdg‘𝑈) ∣
((iEdg‘𝑈)‘𝑥) = {𝑁}}))) |
122 | 117, 121 | syl 17 |
. 2
⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = ((♯‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom (iEdg‘𝑈) ∣
((iEdg‘𝑈)‘𝑥) = {𝑁}}))) |
123 | | vtxdun.vg |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
124 | | eqid 2797 |
. . . . 5
⊢ dom 𝐼 = dom 𝐼 |
125 | 123, 50, 124 | vtxdgval 26710 |
. . . 4
⊢ (𝑁 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}))) |
126 | 115, 125 | syl 17 |
. . 3
⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}))) |
127 | | vtxdun.vh |
. . . . 5
⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
128 | 115, 127 | eleqtrrd 2879 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (Vtx‘𝐻)) |
129 | | eqid 2797 |
. . . . 5
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
130 | | eqid 2797 |
. . . . 5
⊢ dom 𝐽 = dom 𝐽 |
131 | 129, 55, 130 | vtxdgval 26710 |
. . . 4
⊢ (𝑁 ∈ (Vtx‘𝐻) → ((VtxDeg‘𝐻)‘𝑁) = ((♯‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) |
132 | 128, 131 | syl 17 |
. . 3
⊢ (𝜑 → ((VtxDeg‘𝐻)‘𝑁) = ((♯‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) |
133 | 126, 132 | oveq12d 6894 |
. 2
⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)) = (((♯‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}})) +𝑒
((♯‘{𝑥 ∈
dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) +𝑒
(♯‘{𝑥 ∈
dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})))) |
134 | 114, 122,
133 | 3eqtr4d 2841 |
1
⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) |