Proof of Theorem satf0suclem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | peano1 7911 | . . . . . 6
⊢ ∅
∈ ω | 
| 2 |  | eleq1 2828 | . . . . . 6
⊢ (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅
∈ ω)) | 
| 3 | 1, 2 | mpbiri 258 | . . . . 5
⊢ (𝑦 = ∅ → 𝑦 ∈
ω) | 
| 4 | 3 | adantr 480 | . . . 4
⊢ ((𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)) → 𝑦 ∈ ω) | 
| 5 | 4 | pm4.71ri 560 | . . 3
⊢ ((𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)) ↔ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))) | 
| 6 | 5 | opabbii 5209 | . 2
⊢
{〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))} | 
| 7 |  | omex 9684 | . . . . 5
⊢ ω
∈ V | 
| 8 | 7 | a1i 11 | . . . 4
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ω ∈ V) | 
| 9 |  | simp1 1136 | . . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 ∈ 𝑈) | 
| 10 |  | unab 4307 | . . . . . . . 8
⊢ ({𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶}) = {𝑥 ∣ (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} | 
| 11 |  | abrexexg 7986 | . . . . . . . . . 10
⊢ (𝑌 ∈ 𝑉 → {𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∈ V) | 
| 12 | 11 | 3ad2ant2 1134 | . . . . . . . . 9
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∈ V) | 
| 13 |  | abrexexg 7986 | . . . . . . . . . 10
⊢ (𝑍 ∈ 𝑊 → {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶} ∈ V) | 
| 14 | 13 | 3ad2ant3 1135 | . . . . . . . . 9
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶} ∈ V) | 
| 15 |  | unexg 7764 | . . . . . . . . 9
⊢ (({𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∈ V ∧ {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶} ∈ V) → ({𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶}) ∈ V) | 
| 16 | 12, 14, 15 | syl2anc 584 | . . . . . . . 8
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ({𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶}) ∈ V) | 
| 17 | 10, 16 | eqeltrrid 2845 | . . . . . . 7
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) | 
| 18 | 17 | ralrimivw 3149 | . . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ∀𝑢 ∈ 𝑋 {𝑥 ∣ (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) | 
| 19 |  | abrexex2g 7990 | . . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ ∀𝑢 ∈ 𝑋 {𝑥 ∣ (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) → {𝑥 ∣ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) | 
| 20 | 9, 18, 19 | syl2anc 584 | . . . . 5
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) | 
| 21 | 20 | adantr 480 | . . . 4
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑦 ∈ ω) → {𝑥 ∣ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) | 
| 22 | 8, 21 | opabex3rd 7992 | . . 3
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} ∈ V) | 
| 23 |  | simpr 484 | . . . . . 6
⊢ ((𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)) → ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)) | 
| 24 | 23 | anim2i 617 | . . . . 5
⊢ ((𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))) → (𝑦 ∈ ω ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))) | 
| 25 | 24 | ssopab2i 5554 | . . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} | 
| 26 | 25 | a1i 11 | . . 3
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))}) | 
| 27 | 22, 26 | ssexd 5323 | . 2
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))} ∈ V) | 
| 28 | 6, 27 | eqeltrid 2844 | 1
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} ∈ V) |