Proof of Theorem satf0suclem
| Step | Hyp | Ref
| Expression |
| 1 | | peano1 7889 |
. . . . . 6
⊢ ∅
∈ ω |
| 2 | | eleq1 2823 |
. . . . . 6
⊢ (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅
∈ ω)) |
| 3 | 1, 2 | mpbiri 258 |
. . . . 5
⊢ (𝑦 = ∅ → 𝑦 ∈
ω) |
| 4 | 3 | adantr 480 |
. . . 4
⊢ ((𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)) → 𝑦 ∈ ω) |
| 5 | 4 | pm4.71ri 560 |
. . 3
⊢ ((𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)) ↔ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))) |
| 6 | 5 | opabbii 5191 |
. 2
⊢
{〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))} |
| 7 | | omex 9662 |
. . . . 5
⊢ ω
∈ V |
| 8 | 7 | a1i 11 |
. . . 4
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ω ∈ V) |
| 9 | | simp1 1136 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 ∈ 𝑈) |
| 10 | | unab 4288 |
. . . . . . . 8
⊢ ({𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶}) = {𝑥 ∣ (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} |
| 11 | | abrexexg 7964 |
. . . . . . . . . 10
⊢ (𝑌 ∈ 𝑉 → {𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∈ V) |
| 12 | 11 | 3ad2ant2 1134 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∈ V) |
| 13 | | abrexexg 7964 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑊 → {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶} ∈ V) |
| 14 | 13 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶} ∈ V) |
| 15 | | unexg 7742 |
. . . . . . . . 9
⊢ (({𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∈ V ∧ {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶} ∈ V) → ({𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶}) ∈ V) |
| 16 | 12, 14, 15 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ({𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶}) ∈ V) |
| 17 | 10, 16 | eqeltrrid 2840 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) |
| 18 | 17 | ralrimivw 3137 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ∀𝑢 ∈ 𝑋 {𝑥 ∣ (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) |
| 19 | | abrexex2g 7968 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ ∀𝑢 ∈ 𝑋 {𝑥 ∣ (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) → {𝑥 ∣ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) |
| 20 | 9, 18, 19 | syl2anc 584 |
. . . . 5
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) |
| 21 | 20 | adantr 480 |
. . . 4
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑦 ∈ ω) → {𝑥 ∣ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) |
| 22 | 8, 21 | opabex3rd 7970 |
. . 3
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} ∈ V) |
| 23 | | simpr 484 |
. . . . . 6
⊢ ((𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)) → ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)) |
| 24 | 23 | anim2i 617 |
. . . . 5
⊢ ((𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))) → (𝑦 ∈ ω ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))) |
| 25 | 24 | ssopab2i 5530 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} |
| 26 | 25 | a1i 11 |
. . 3
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))}) |
| 27 | 22, 26 | ssexd 5299 |
. 2
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))} ∈ V) |
| 28 | 6, 27 | eqeltrid 2839 |
1
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} ∈ V) |