Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0suclem Structured version   Visualization version   GIF version

Theorem satf0suclem 34664
Description: Lemma for satf0suc 34665, sat1el2xp 34668 and fmlasuc0 34673. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
satf0suclem ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} ∈ V)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑢,𝑈,𝑥,𝑦   𝑢,𝑉,𝑦   𝑢,𝑊,𝑦   𝑢,𝑋,𝑥,𝑦   𝑢,𝑌,𝑣,𝑥,𝑦   𝑢,𝑍,𝑤,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑢)   𝐶(𝑦,𝑤,𝑣,𝑢)   𝑈(𝑤,𝑣)   𝑉(𝑥,𝑤,𝑣)   𝑊(𝑥,𝑤,𝑣)   𝑋(𝑤,𝑣)   𝑌(𝑤)   𝑍(𝑣)

Proof of Theorem satf0suclem
StepHypRef Expression
1 peano1 7881 . . . . . 6 ∅ ∈ ω
2 eleq1 2819 . . . . . 6 (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω))
31, 2mpbiri 257 . . . . 5 (𝑦 = ∅ → 𝑦 ∈ ω)
43adantr 479 . . . 4 ((𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)) → 𝑦 ∈ ω)
54pm4.71ri 559 . . 3 ((𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)) ↔ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))))
65opabbii 5214 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))}
7 omex 9640 . . . . 5 ω ∈ V
87a1i 11 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ω ∈ V)
9 simp1 1134 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑋𝑈)
10 unab 4297 . . . . . . . 8 ({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶}) = {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)}
11 abrexexg 7949 . . . . . . . . . 10 (𝑌𝑉 → {𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∈ V)
12113ad2ant2 1132 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∈ V)
13 abrexexg 7949 . . . . . . . . . 10 (𝑍𝑊 → {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶} ∈ V)
14133ad2ant3 1133 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶} ∈ V)
15 unexg 7738 . . . . . . . . 9 (({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∈ V ∧ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶} ∈ V) → ({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶}) ∈ V)
1612, 14, 15syl2anc 582 . . . . . . . 8 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶}) ∈ V)
1710, 16eqeltrrid 2836 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
1817ralrimivw 3148 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ∀𝑢𝑋 {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
19 abrexex2g 7953 . . . . . 6 ((𝑋𝑈 ∧ ∀𝑢𝑋 {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V) → {𝑥 ∣ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
209, 18, 19syl2anc 582 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
2120adantr 479 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝑦 ∈ ω) → {𝑥 ∣ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
228, 21opabex3rd 7955 . . 3 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} ∈ V)
23 simpr 483 . . . . . 6 ((𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)) → ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))
2423anim2i 615 . . . . 5 ((𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))) → (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))
2524ssopab2i 5549 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))}
2625a1i 11 . . 3 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))})
2722, 26ssexd 5323 . 2 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))} ∈ V)
286, 27eqeltrid 2835 1 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 843  w3a 1085   = wceq 1539  wcel 2104  {cab 2707  wral 3059  wrex 3068  Vcvv 3472  cun 3945  wss 3947  c0 4321  {copab 5209  ωcom 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-om 7858
This theorem is referenced by:  satf0suc  34665  sat1el2xp  34668
  Copyright terms: Public domain W3C validator