Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0suclem Structured version   Visualization version   GIF version

Theorem satf0suclem 35343
Description: Lemma for satf0suc 35344, sat1el2xp 35347 and fmlasuc0 35352. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
satf0suclem ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} ∈ V)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑢,𝑈,𝑥,𝑦   𝑢,𝑉,𝑦   𝑢,𝑊,𝑦   𝑢,𝑋,𝑥,𝑦   𝑢,𝑌,𝑣,𝑥,𝑦   𝑢,𝑍,𝑤,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑢)   𝐶(𝑦,𝑤,𝑣,𝑢)   𝑈(𝑤,𝑣)   𝑉(𝑥,𝑤,𝑣)   𝑊(𝑥,𝑤,𝑣)   𝑋(𝑤,𝑣)   𝑌(𝑤)   𝑍(𝑣)

Proof of Theorem satf0suclem
StepHypRef Expression
1 peano1 7927 . . . . . 6 ∅ ∈ ω
2 eleq1 2832 . . . . . 6 (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω))
31, 2mpbiri 258 . . . . 5 (𝑦 = ∅ → 𝑦 ∈ ω)
43adantr 480 . . . 4 ((𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)) → 𝑦 ∈ ω)
54pm4.71ri 560 . . 3 ((𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)) ↔ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))))
65opabbii 5233 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))}
7 omex 9712 . . . . 5 ω ∈ V
87a1i 11 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ω ∈ V)
9 simp1 1136 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑋𝑈)
10 unab 4327 . . . . . . . 8 ({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶}) = {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)}
11 abrexexg 8001 . . . . . . . . . 10 (𝑌𝑉 → {𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∈ V)
12113ad2ant2 1134 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∈ V)
13 abrexexg 8001 . . . . . . . . . 10 (𝑍𝑊 → {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶} ∈ V)
14133ad2ant3 1135 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶} ∈ V)
15 unexg 7778 . . . . . . . . 9 (({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∈ V ∧ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶} ∈ V) → ({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶}) ∈ V)
1612, 14, 15syl2anc 583 . . . . . . . 8 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶}) ∈ V)
1710, 16eqeltrrid 2849 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
1817ralrimivw 3156 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ∀𝑢𝑋 {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
19 abrexex2g 8005 . . . . . 6 ((𝑋𝑈 ∧ ∀𝑢𝑋 {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V) → {𝑥 ∣ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
209, 18, 19syl2anc 583 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
2120adantr 480 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝑦 ∈ ω) → {𝑥 ∣ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
228, 21opabex3rd 8007 . . 3 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} ∈ V)
23 simpr 484 . . . . . 6 ((𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)) → ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))
2423anim2i 616 . . . . 5 ((𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))) → (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))
2524ssopab2i 5569 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))}
2625a1i 11 . . 3 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))})
2722, 26ssexd 5342 . 2 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))} ∈ V)
286, 27eqeltrid 2848 1 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  cun 3974  wss 3976  c0 4352  {copab 5228  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-om 7904
This theorem is referenced by:  satf0suc  35344  sat1el2xp  35347
  Copyright terms: Public domain W3C validator