Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0suclem Structured version   Visualization version   GIF version

Theorem satf0suclem 33382
Description: Lemma for satf0suc 33383, sat1el2xp 33386 and fmlasuc0 33391. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
satf0suclem ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} ∈ V)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑢,𝑈,𝑥,𝑦   𝑢,𝑉,𝑦   𝑢,𝑊,𝑦   𝑢,𝑋,𝑥,𝑦   𝑢,𝑌,𝑣,𝑥,𝑦   𝑢,𝑍,𝑤,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑢)   𝐶(𝑦,𝑤,𝑣,𝑢)   𝑈(𝑤,𝑣)   𝑉(𝑥,𝑤,𝑣)   𝑊(𝑥,𝑤,𝑣)   𝑋(𝑤,𝑣)   𝑌(𝑤)   𝑍(𝑣)

Proof of Theorem satf0suclem
StepHypRef Expression
1 peano1 7767 . . . . . 6 ∅ ∈ ω
2 eleq1 2824 . . . . . 6 (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω))
31, 2mpbiri 258 . . . . 5 (𝑦 = ∅ → 𝑦 ∈ ω)
43adantr 482 . . . 4 ((𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)) → 𝑦 ∈ ω)
54pm4.71ri 562 . . 3 ((𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)) ↔ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))))
65opabbii 5148 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))}
7 omex 9445 . . . . 5 ω ∈ V
87a1i 11 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ω ∈ V)
9 simp1 1136 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑋𝑈)
10 unab 4238 . . . . . . . 8 ({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶}) = {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)}
11 abrexexg 7835 . . . . . . . . . 10 (𝑌𝑉 → {𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∈ V)
12113ad2ant2 1134 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∈ V)
13 abrexexg 7835 . . . . . . . . . 10 (𝑍𝑊 → {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶} ∈ V)
14133ad2ant3 1135 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶} ∈ V)
15 unexg 7631 . . . . . . . . 9 (({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∈ V ∧ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶} ∈ V) → ({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶}) ∈ V)
1612, 14, 15syl2anc 585 . . . . . . . 8 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶}) ∈ V)
1710, 16eqeltrrid 2842 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
1817ralrimivw 3144 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ∀𝑢𝑋 {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
19 abrexex2g 7839 . . . . . 6 ((𝑋𝑈 ∧ ∀𝑢𝑋 {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V) → {𝑥 ∣ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
209, 18, 19syl2anc 585 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
2120adantr 482 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝑦 ∈ ω) → {𝑥 ∣ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
228, 21opabex3rd 7841 . . 3 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} ∈ V)
23 simpr 486 . . . . . 6 ((𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)) → ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))
2423anim2i 618 . . . . 5 ((𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))) → (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))
2524ssopab2i 5476 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))}
2625a1i 11 . . 3 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))})
2722, 26ssexd 5257 . 2 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))} ∈ V)
286, 27eqeltrid 2841 1 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 845  w3a 1087   = wceq 1539  wcel 2104  {cab 2713  wral 3062  wrex 3071  Vcvv 3437  cun 3890  wss 3892  c0 4262  {copab 5143  ωcom 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-tr 5199  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-om 7745
This theorem is referenced by:  satf0suc  33383  sat1el2xp  33386
  Copyright terms: Public domain W3C validator