Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0suclem Structured version   Visualization version   GIF version

Theorem satf0suclem 34829
Description: Lemma for satf0suc 34830, sat1el2xp 34833 and fmlasuc0 34838. (Contributed by AV, 19-Sep-2023.)
Assertion
Ref Expression
satf0suclem ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} ∈ V)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑢,𝑈,𝑥,𝑦   𝑢,𝑉,𝑦   𝑢,𝑊,𝑦   𝑢,𝑋,𝑥,𝑦   𝑢,𝑌,𝑣,𝑥,𝑦   𝑢,𝑍,𝑤,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑢)   𝐶(𝑦,𝑤,𝑣,𝑢)   𝑈(𝑤,𝑣)   𝑉(𝑥,𝑤,𝑣)   𝑊(𝑥,𝑤,𝑣)   𝑋(𝑤,𝑣)   𝑌(𝑤)   𝑍(𝑣)

Proof of Theorem satf0suclem
StepHypRef Expression
1 peano1 7883 . . . . . 6 ∅ ∈ ω
2 eleq1 2820 . . . . . 6 (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω))
31, 2mpbiri 258 . . . . 5 (𝑦 = ∅ → 𝑦 ∈ ω)
43adantr 480 . . . 4 ((𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)) → 𝑦 ∈ ω)
54pm4.71ri 560 . . 3 ((𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)) ↔ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))))
65opabbii 5215 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))}
7 omex 9644 . . . . 5 ω ∈ V
87a1i 11 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ω ∈ V)
9 simp1 1135 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑋𝑈)
10 unab 4298 . . . . . . . 8 ({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶}) = {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)}
11 abrexexg 7951 . . . . . . . . . 10 (𝑌𝑉 → {𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∈ V)
12113ad2ant2 1133 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∈ V)
13 abrexexg 7951 . . . . . . . . . 10 (𝑍𝑊 → {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶} ∈ V)
14133ad2ant3 1134 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶} ∈ V)
15 unexg 7740 . . . . . . . . 9 (({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∈ V ∧ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶} ∈ V) → ({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶}) ∈ V)
1612, 14, 15syl2anc 583 . . . . . . . 8 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ({𝑥 ∣ ∃𝑣𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤𝑍 𝑥 = 𝐶}) ∈ V)
1710, 16eqeltrrid 2837 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
1817ralrimivw 3149 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ∀𝑢𝑋 {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
19 abrexex2g 7955 . . . . . 6 ((𝑋𝑈 ∧ ∀𝑢𝑋 {𝑥 ∣ (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V) → {𝑥 ∣ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
209, 18, 19syl2anc 583 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
2120adantr 480 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝑦 ∈ ω) → {𝑥 ∣ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)} ∈ V)
228, 21opabex3rd 7957 . . 3 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} ∈ V)
23 simpr 484 . . . . . 6 ((𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)) → ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))
2423anim2i 616 . . . . 5 ((𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))) → (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))
2524ssopab2i 5550 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))}
2625a1i 11 . . 3 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))})
2722, 26ssexd 5324 . 2 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶)))} ∈ V)
286, 27eqeltrid 2836 1 ((𝑋𝑈𝑌𝑉𝑍𝑊) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑋 (∃𝑣𝑌 𝑥 = 𝐵 ∨ ∃𝑤𝑍 𝑥 = 𝐶))} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  {cab 2708  wral 3060  wrex 3069  Vcvv 3473  cun 3946  wss 3948  c0 4322  {copab 5210  ωcom 7859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-om 7860
This theorem is referenced by:  satf0suc  34830  sat1el2xp  34833
  Copyright terms: Public domain W3C validator