Proof of Theorem satf0suclem
Step | Hyp | Ref
| Expression |
1 | | peano1 7767 |
. . . . . 6
⊢ ∅
∈ ω |
2 | | eleq1 2824 |
. . . . . 6
⊢ (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅
∈ ω)) |
3 | 1, 2 | mpbiri 258 |
. . . . 5
⊢ (𝑦 = ∅ → 𝑦 ∈
ω) |
4 | 3 | adantr 482 |
. . . 4
⊢ ((𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)) → 𝑦 ∈ ω) |
5 | 4 | pm4.71ri 562 |
. . 3
⊢ ((𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)) ↔ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))) |
6 | 5 | opabbii 5148 |
. 2
⊢
{〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))} |
7 | | omex 9445 |
. . . . 5
⊢ ω
∈ V |
8 | 7 | a1i 11 |
. . . 4
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ω ∈ V) |
9 | | simp1 1136 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑋 ∈ 𝑈) |
10 | | unab 4238 |
. . . . . . . 8
⊢ ({𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶}) = {𝑥 ∣ (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} |
11 | | abrexexg 7835 |
. . . . . . . . . 10
⊢ (𝑌 ∈ 𝑉 → {𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∈ V) |
12 | 11 | 3ad2ant2 1134 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∈ V) |
13 | | abrexexg 7835 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑊 → {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶} ∈ V) |
14 | 13 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶} ∈ V) |
15 | | unexg 7631 |
. . . . . . . . 9
⊢ (({𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∈ V ∧ {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶} ∈ V) → ({𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶}) ∈ V) |
16 | 12, 14, 15 | syl2anc 585 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ({𝑥 ∣ ∃𝑣 ∈ 𝑌 𝑥 = 𝐵} ∪ {𝑥 ∣ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶}) ∈ V) |
17 | 10, 16 | eqeltrrid 2842 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) |
18 | 17 | ralrimivw 3144 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ∀𝑢 ∈ 𝑋 {𝑥 ∣ (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) |
19 | | abrexex2g 7839 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ ∀𝑢 ∈ 𝑋 {𝑥 ∣ (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) → {𝑥 ∣ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) |
20 | 9, 18, 19 | syl2anc 585 |
. . . . 5
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) |
21 | 20 | adantr 482 |
. . . 4
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑦 ∈ ω) → {𝑥 ∣ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)} ∈ V) |
22 | 8, 21 | opabex3rd 7841 |
. . 3
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} ∈ V) |
23 | | simpr 486 |
. . . . . 6
⊢ ((𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)) → ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)) |
24 | 23 | anim2i 618 |
. . . . 5
⊢ ((𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))) → (𝑦 ∈ ω ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))) |
25 | 24 | ssopab2i 5476 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} |
26 | 25 | a1i 11 |
. . 3
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))}) |
27 | 22, 26 | ssexd 5257 |
. 2
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ ω ∧ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶)))} ∈ V) |
28 | 6, 27 | eqeltrid 2841 |
1
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} ∈ V) |