MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcoi1 Structured version   Visualization version   GIF version

Theorem relcoi1 6309
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.) (Proof shortened by OpenAI, 3-Jul-2020.)
Assertion
Ref Expression
relcoi1 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)

Proof of Theorem relcoi1
StepHypRef Expression
1 coires1 6295 . 2 (𝑅 ∘ ( I ↾ 𝑅)) = (𝑅 𝑅)
2 relresfld 6307 . 2 (Rel 𝑅 → (𝑅 𝑅) = 𝑅)
31, 2eqtrid 2792 1 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537   cuni 4931   I cid 5592  cres 5702  ccom 5704  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712
This theorem is referenced by:  relexpsucl  15080  tsrdir  18674
  Copyright terms: Public domain W3C validator