MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcoi1 Structured version   Visualization version   GIF version

Theorem relcoi1 6280
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.) (Proof shortened by OpenAI, 3-Jul-2020.)
Assertion
Ref Expression
relcoi1 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)

Proof of Theorem relcoi1
StepHypRef Expression
1 coires1 6266 . 2 (𝑅 ∘ ( I ↾ 𝑅)) = (𝑅 𝑅)
2 relresfld 6278 . 2 (Rel 𝑅 → (𝑅 𝑅) = 𝑅)
31, 2eqtrid 2781 1 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   cuni 4889   I cid 5559  cres 5669  ccom 5671  Rel wrel 5672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679
This theorem is referenced by:  relexpsucl  15053  tsrdir  18623
  Copyright terms: Public domain W3C validator