MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcoi1 Structured version   Visualization version   GIF version

Theorem relcoi1 6277
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.) (Proof shortened by OpenAI, 3-Jul-2020.)
Assertion
Ref Expression
relcoi1 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)

Proof of Theorem relcoi1
StepHypRef Expression
1 coires1 6263 . 2 (𝑅 ∘ ( I ↾ 𝑅)) = (𝑅 𝑅)
2 relresfld 6275 . 2 (Rel 𝑅 → (𝑅 𝑅) = 𝑅)
31, 2eqtrid 2784 1 (Rel 𝑅 → (𝑅 ∘ ( I ↾ 𝑅)) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   cuni 4908   I cid 5573  cres 5678  ccom 5680  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688
This theorem is referenced by:  relexpsucl  14977  tsrdir  18556
  Copyright terms: Public domain W3C validator