![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relcoi1 | Structured version Visualization version GIF version |
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.) (Proof shortened by OpenAI, 3-Jul-2020.) |
Ref | Expression |
---|---|
relcoi1 | ⊢ (Rel 𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coires1 6256 | . 2 ⊢ (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = (𝑅 ↾ ∪ ∪ 𝑅) | |
2 | relresfld 6268 | . 2 ⊢ (Rel 𝑅 → (𝑅 ↾ ∪ ∪ 𝑅) = 𝑅) | |
3 | 1, 2 | eqtrid 2778 | 1 ⊢ (Rel 𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∪ cuni 4902 I cid 5566 ↾ cres 5671 ∘ ccom 5673 Rel wrel 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 |
This theorem is referenced by: relexpsucl 14981 tsrdir 18566 |
Copyright terms: Public domain | W3C validator |