| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relcoi1 | Structured version Visualization version GIF version | ||
| Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| Ref | Expression |
|---|---|
| relcoi1 | ⊢ (Rel 𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coires1 6266 | . 2 ⊢ (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = (𝑅 ↾ ∪ ∪ 𝑅) | |
| 2 | relresfld 6278 | . 2 ⊢ (Rel 𝑅 → (𝑅 ↾ ∪ ∪ 𝑅) = 𝑅) | |
| 3 | 1, 2 | eqtrid 2781 | 1 ⊢ (Rel 𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∪ cuni 4889 I cid 5559 ↾ cres 5669 ∘ ccom 5671 Rel wrel 5672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 |
| This theorem is referenced by: relexpsucl 15053 tsrdir 18623 |
| Copyright terms: Public domain | W3C validator |