MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unopn Structured version   Visualization version   GIF version

Theorem unopn 22396
Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
unopn ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)

Proof of Theorem unopn
StepHypRef Expression
1 uniprg 4924 . . 3 ((𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1130 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} = (𝐴𝐵))
3 prssi 4823 . . . 4 ((𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} ⊆ 𝐽)
4 uniopn 22390 . . . 4 ((𝐽 ∈ Top ∧ {𝐴, 𝐵} ⊆ 𝐽) → {𝐴, 𝐵} ∈ 𝐽)
53, 4sylan2 593 . . 3 ((𝐽 ∈ Top ∧ (𝐴𝐽𝐵𝐽)) → {𝐴, 𝐵} ∈ 𝐽)
653impb 1115 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} ∈ 𝐽)
72, 6eqeltrrd 2834 1 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cun 3945  wss 3947  {cpr 4629   cuni 4907  Topctop 22386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-un 3952  df-in 3954  df-ss 3964  df-pw 4603  df-sn 4628  df-pr 4630  df-uni 4908  df-top 22387
This theorem is referenced by:  comppfsc  23027  txcld  23098  icccld  24274  icccncfext  44589  toplatjoin  47580  topdlat  47582
  Copyright terms: Public domain W3C validator