| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unopn | Structured version Visualization version GIF version | ||
| Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| unopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∪ 𝐵) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 4887 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| 3 | prssi 4785 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → {𝐴, 𝐵} ⊆ 𝐽) | |
| 4 | uniopn 22784 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ {𝐴, 𝐵} ⊆ 𝐽) → ∪ {𝐴, 𝐵} ∈ 𝐽) | |
| 5 | 3, 4 | sylan2 593 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽)) → ∪ {𝐴, 𝐵} ∈ 𝐽) |
| 6 | 5 | 3impb 1114 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → ∪ {𝐴, 𝐵} ∈ 𝐽) |
| 7 | 2, 6 | eqeltrrd 2829 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∪ 𝐵) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 {cpr 4591 ∪ cuni 4871 Topctop 22780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-un 3919 df-in 3921 df-ss 3931 df-pw 4565 df-sn 4590 df-pr 4592 df-uni 4872 df-top 22781 |
| This theorem is referenced by: comppfsc 23419 txcld 23490 icccld 24654 redvmptabs 42348 icccncfext 45885 toplatjoin 48990 topdlat 48992 |
| Copyright terms: Public domain | W3C validator |