MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unopn Structured version   Visualization version   GIF version

Theorem unopn 22841
Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
unopn ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)

Proof of Theorem unopn
StepHypRef Expression
1 uniprg 4899 . . 3 ((𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1130 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} = (𝐴𝐵))
3 prssi 4797 . . . 4 ((𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} ⊆ 𝐽)
4 uniopn 22835 . . . 4 ((𝐽 ∈ Top ∧ {𝐴, 𝐵} ⊆ 𝐽) → {𝐴, 𝐵} ∈ 𝐽)
53, 4sylan2 593 . . 3 ((𝐽 ∈ Top ∧ (𝐴𝐽𝐵𝐽)) → {𝐴, 𝐵} ∈ 𝐽)
653impb 1114 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} ∈ 𝐽)
72, 6eqeltrrd 2835 1 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cun 3924  wss 3926  {cpr 4603   cuni 4883  Topctop 22831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-un 3931  df-in 3933  df-ss 3943  df-pw 4577  df-sn 4602  df-pr 4604  df-uni 4884  df-top 22832
This theorem is referenced by:  comppfsc  23470  txcld  23541  icccld  24705  redvmptabs  42403  icccncfext  45916  toplatjoin  48976  topdlat  48978
  Copyright terms: Public domain W3C validator