MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcld Structured version   Visualization version   GIF version

Theorem txcld 23329
Description: The product of two closed sets is closed in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
txcld ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)))

Proof of Theorem txcld
StepHypRef Expression
1 eqid 2730 . . . . 5 𝑅 = 𝑅
21cldss 22755 . . . 4 (𝐴 ∈ (Clsd‘𝑅) → 𝐴 𝑅)
3 eqid 2730 . . . . 5 𝑆 = 𝑆
43cldss 22755 . . . 4 (𝐵 ∈ (Clsd‘𝑆) → 𝐵 𝑆)
5 xpss12 5692 . . . 4 ((𝐴 𝑅𝐵 𝑆) → (𝐴 × 𝐵) ⊆ ( 𝑅 × 𝑆))
62, 4, 5syl2an 594 . . 3 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ⊆ ( 𝑅 × 𝑆))
7 cldrcl 22752 . . . 4 (𝐴 ∈ (Clsd‘𝑅) → 𝑅 ∈ Top)
8 cldrcl 22752 . . . 4 (𝐵 ∈ (Clsd‘𝑆) → 𝑆 ∈ Top)
91, 3txuni 23318 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
107, 8, 9syl2an 594 . . 3 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
116, 10sseqtrd 4023 . 2 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ⊆ (𝑅 ×t 𝑆))
12 difxp 6164 . . . 4 (( 𝑅 × 𝑆) ∖ (𝐴 × 𝐵)) = ((( 𝑅𝐴) × 𝑆) ∪ ( 𝑅 × ( 𝑆𝐵)))
1310difeq1d 4122 . . . 4 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (( 𝑅 × 𝑆) ∖ (𝐴 × 𝐵)) = ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)))
1412, 13eqtr3id 2784 . . 3 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ((( 𝑅𝐴) × 𝑆) ∪ ( 𝑅 × ( 𝑆𝐵))) = ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)))
15 txtop 23295 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
167, 8, 15syl2an 594 . . . 4 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝑅 ×t 𝑆) ∈ Top)
177adantr 479 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑅 ∈ Top)
188adantl 480 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑆 ∈ Top)
191cldopn 22757 . . . . . 6 (𝐴 ∈ (Clsd‘𝑅) → ( 𝑅𝐴) ∈ 𝑅)
2019adantr 479 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( 𝑅𝐴) ∈ 𝑅)
213topopn 22630 . . . . . 6 (𝑆 ∈ Top → 𝑆𝑆)
2218, 21syl 17 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑆𝑆)
23 txopn 23328 . . . . 5 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (( 𝑅𝐴) ∈ 𝑅 𝑆𝑆)) → (( 𝑅𝐴) × 𝑆) ∈ (𝑅 ×t 𝑆))
2417, 18, 20, 22, 23syl22anc 835 . . . 4 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (( 𝑅𝐴) × 𝑆) ∈ (𝑅 ×t 𝑆))
251topopn 22630 . . . . . 6 (𝑅 ∈ Top → 𝑅𝑅)
2617, 25syl 17 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑅𝑅)
273cldopn 22757 . . . . . 6 (𝐵 ∈ (Clsd‘𝑆) → ( 𝑆𝐵) ∈ 𝑆)
2827adantl 480 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( 𝑆𝐵) ∈ 𝑆)
29 txopn 23328 . . . . 5 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ ( 𝑅𝑅 ∧ ( 𝑆𝐵) ∈ 𝑆)) → ( 𝑅 × ( 𝑆𝐵)) ∈ (𝑅 ×t 𝑆))
3017, 18, 26, 28, 29syl22anc 835 . . . 4 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( 𝑅 × ( 𝑆𝐵)) ∈ (𝑅 ×t 𝑆))
31 unopn 22627 . . . 4 (((𝑅 ×t 𝑆) ∈ Top ∧ (( 𝑅𝐴) × 𝑆) ∈ (𝑅 ×t 𝑆) ∧ ( 𝑅 × ( 𝑆𝐵)) ∈ (𝑅 ×t 𝑆)) → ((( 𝑅𝐴) × 𝑆) ∪ ( 𝑅 × ( 𝑆𝐵))) ∈ (𝑅 ×t 𝑆))
3216, 24, 30, 31syl3anc 1369 . . 3 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ((( 𝑅𝐴) × 𝑆) ∪ ( 𝑅 × ( 𝑆𝐵))) ∈ (𝑅 ×t 𝑆))
3314, 32eqeltrrd 2832 . 2 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)) ∈ (𝑅 ×t 𝑆))
34 eqid 2730 . . . 4 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
3534iscld 22753 . . 3 ((𝑅 ×t 𝑆) ∈ Top → ((𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)) ↔ ((𝐴 × 𝐵) ⊆ (𝑅 ×t 𝑆) ∧ ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)) ∈ (𝑅 ×t 𝑆))))
3616, 35syl 17 . 2 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ((𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)) ↔ ((𝐴 × 𝐵) ⊆ (𝑅 ×t 𝑆) ∧ ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)) ∈ (𝑅 ×t 𝑆))))
3711, 33, 36mpbir2and 709 1 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  cdif 3946  cun 3947  wss 3949   cuni 4909   × cxp 5675  cfv 6544  (class class class)co 7413  Topctop 22617  Clsdccld 22742   ×t ctx 23286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7979  df-2nd 7980  df-topgen 17395  df-top 22618  df-topon 22635  df-bases 22671  df-cld 22745  df-tx 23288
This theorem is referenced by:  txcls  23330  cnmpopc  24671  sxbrsigalem3  33567
  Copyright terms: Public domain W3C validator