Proof of Theorem txcld
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢ ∪ 𝑅 =
∪ 𝑅 |
2 | 1 | cldss 22180 |
. . . 4
⊢ (𝐴 ∈ (Clsd‘𝑅) → 𝐴 ⊆ ∪ 𝑅) |
3 | | eqid 2738 |
. . . . 5
⊢ ∪ 𝑆 =
∪ 𝑆 |
4 | 3 | cldss 22180 |
. . . 4
⊢ (𝐵 ∈ (Clsd‘𝑆) → 𝐵 ⊆ ∪ 𝑆) |
5 | | xpss12 5604 |
. . . 4
⊢ ((𝐴 ⊆ ∪ 𝑅
∧ 𝐵 ⊆ ∪ 𝑆)
→ (𝐴 × 𝐵) ⊆ (∪ 𝑅
× ∪ 𝑆)) |
6 | 2, 4, 5 | syl2an 596 |
. . 3
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ⊆ (∪
𝑅 × ∪ 𝑆)) |
7 | | cldrcl 22177 |
. . . 4
⊢ (𝐴 ∈ (Clsd‘𝑅) → 𝑅 ∈ Top) |
8 | | cldrcl 22177 |
. . . 4
⊢ (𝐵 ∈ (Clsd‘𝑆) → 𝑆 ∈ Top) |
9 | 1, 3 | txuni 22743 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∪ 𝑅
× ∪ 𝑆) = ∪ (𝑅 ×t 𝑆)) |
10 | 7, 8, 9 | syl2an 596 |
. . 3
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (∪
𝑅 × ∪ 𝑆) =
∪ (𝑅 ×t 𝑆)) |
11 | 6, 10 | sseqtrd 3961 |
. 2
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ⊆ ∪
(𝑅 ×t
𝑆)) |
12 | | difxp 6067 |
. . . 4
⊢ ((∪ 𝑅
× ∪ 𝑆) ∖ (𝐴 × 𝐵)) = (((∪ 𝑅 ∖ 𝐴) × ∪ 𝑆) ∪ (∪ 𝑅
× (∪ 𝑆 ∖ 𝐵))) |
13 | 10 | difeq1d 4056 |
. . . 4
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ((∪
𝑅 × ∪ 𝑆)
∖ (𝐴 × 𝐵)) = (∪ (𝑅
×t 𝑆)
∖ (𝐴 × 𝐵))) |
14 | 12, 13 | eqtr3id 2792 |
. . 3
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (((∪
𝑅 ∖ 𝐴) × ∪ 𝑆) ∪ (∪ 𝑅
× (∪ 𝑆 ∖ 𝐵))) = (∪ (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵))) |
15 | | txtop 22720 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
16 | 7, 8, 15 | syl2an 596 |
. . . 4
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝑅 ×t 𝑆) ∈ Top) |
17 | 7 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑅 ∈ Top) |
18 | 8 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑆 ∈ Top) |
19 | 1 | cldopn 22182 |
. . . . . 6
⊢ (𝐴 ∈ (Clsd‘𝑅) → (∪ 𝑅
∖ 𝐴) ∈ 𝑅) |
20 | 19 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (∪
𝑅 ∖ 𝐴) ∈ 𝑅) |
21 | 3 | topopn 22055 |
. . . . . 6
⊢ (𝑆 ∈ Top → ∪ 𝑆
∈ 𝑆) |
22 | 18, 21 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ∪ 𝑆 ∈ 𝑆) |
23 | | txopn 22753 |
. . . . 5
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ ((∪ 𝑅
∖ 𝐴) ∈ 𝑅 ∧ ∪ 𝑆
∈ 𝑆)) → ((∪ 𝑅
∖ 𝐴) × ∪ 𝑆)
∈ (𝑅
×t 𝑆)) |
24 | 17, 18, 20, 22, 23 | syl22anc 836 |
. . . 4
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ((∪
𝑅 ∖ 𝐴) × ∪ 𝑆) ∈ (𝑅 ×t 𝑆)) |
25 | 1 | topopn 22055 |
. . . . . 6
⊢ (𝑅 ∈ Top → ∪ 𝑅
∈ 𝑅) |
26 | 17, 25 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ∪ 𝑅 ∈ 𝑅) |
27 | 3 | cldopn 22182 |
. . . . . 6
⊢ (𝐵 ∈ (Clsd‘𝑆) → (∪ 𝑆
∖ 𝐵) ∈ 𝑆) |
28 | 27 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (∪
𝑆 ∖ 𝐵) ∈ 𝑆) |
29 | | txopn 22753 |
. . . . 5
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (∪ 𝑅
∈ 𝑅 ∧ (∪ 𝑆
∖ 𝐵) ∈ 𝑆)) → (∪ 𝑅
× (∪ 𝑆 ∖ 𝐵)) ∈ (𝑅 ×t 𝑆)) |
30 | 17, 18, 26, 28, 29 | syl22anc 836 |
. . . 4
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (∪
𝑅 × (∪ 𝑆
∖ 𝐵)) ∈ (𝑅 ×t 𝑆)) |
31 | | unopn 22052 |
. . . 4
⊢ (((𝑅 ×t 𝑆) ∈ Top ∧ ((∪ 𝑅
∖ 𝐴) × ∪ 𝑆)
∈ (𝑅
×t 𝑆)
∧ (∪ 𝑅 × (∪ 𝑆 ∖ 𝐵)) ∈ (𝑅 ×t 𝑆)) → (((∪
𝑅 ∖ 𝐴) × ∪ 𝑆) ∪ (∪ 𝑅
× (∪ 𝑆 ∖ 𝐵))) ∈ (𝑅 ×t 𝑆)) |
32 | 16, 24, 30, 31 | syl3anc 1370 |
. . 3
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (((∪
𝑅 ∖ 𝐴) × ∪ 𝑆) ∪ (∪ 𝑅
× (∪ 𝑆 ∖ 𝐵))) ∈ (𝑅 ×t 𝑆)) |
33 | 14, 32 | eqeltrrd 2840 |
. 2
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (∪
(𝑅 ×t
𝑆) ∖ (𝐴 × 𝐵)) ∈ (𝑅 ×t 𝑆)) |
34 | | eqid 2738 |
. . . 4
⊢ ∪ (𝑅
×t 𝑆) =
∪ (𝑅 ×t 𝑆) |
35 | 34 | iscld 22178 |
. . 3
⊢ ((𝑅 ×t 𝑆) ∈ Top → ((𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)) ↔ ((𝐴 × 𝐵) ⊆ ∪
(𝑅 ×t
𝑆) ∧ (∪ (𝑅
×t 𝑆)
∖ (𝐴 × 𝐵)) ∈ (𝑅 ×t 𝑆)))) |
36 | 16, 35 | syl 17 |
. 2
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ((𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)) ↔ ((𝐴 × 𝐵) ⊆ ∪
(𝑅 ×t
𝑆) ∧ (∪ (𝑅
×t 𝑆)
∖ (𝐴 × 𝐵)) ∈ (𝑅 ×t 𝑆)))) |
37 | 11, 33, 36 | mpbir2and 710 |
1
⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆))) |