MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcld Structured version   Visualization version   GIF version

Theorem txcld 23632
Description: The product of two closed sets is closed in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
txcld ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)))

Proof of Theorem txcld
StepHypRef Expression
1 eqid 2740 . . . . 5 𝑅 = 𝑅
21cldss 23058 . . . 4 (𝐴 ∈ (Clsd‘𝑅) → 𝐴 𝑅)
3 eqid 2740 . . . . 5 𝑆 = 𝑆
43cldss 23058 . . . 4 (𝐵 ∈ (Clsd‘𝑆) → 𝐵 𝑆)
5 xpss12 5715 . . . 4 ((𝐴 𝑅𝐵 𝑆) → (𝐴 × 𝐵) ⊆ ( 𝑅 × 𝑆))
62, 4, 5syl2an 595 . . 3 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ⊆ ( 𝑅 × 𝑆))
7 cldrcl 23055 . . . 4 (𝐴 ∈ (Clsd‘𝑅) → 𝑅 ∈ Top)
8 cldrcl 23055 . . . 4 (𝐵 ∈ (Clsd‘𝑆) → 𝑆 ∈ Top)
91, 3txuni 23621 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
107, 8, 9syl2an 595 . . 3 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
116, 10sseqtrd 4049 . 2 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ⊆ (𝑅 ×t 𝑆))
12 difxp 6195 . . . 4 (( 𝑅 × 𝑆) ∖ (𝐴 × 𝐵)) = ((( 𝑅𝐴) × 𝑆) ∪ ( 𝑅 × ( 𝑆𝐵)))
1310difeq1d 4148 . . . 4 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (( 𝑅 × 𝑆) ∖ (𝐴 × 𝐵)) = ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)))
1412, 13eqtr3id 2794 . . 3 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ((( 𝑅𝐴) × 𝑆) ∪ ( 𝑅 × ( 𝑆𝐵))) = ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)))
15 txtop 23598 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
167, 8, 15syl2an 595 . . . 4 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝑅 ×t 𝑆) ∈ Top)
177adantr 480 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑅 ∈ Top)
188adantl 481 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑆 ∈ Top)
191cldopn 23060 . . . . . 6 (𝐴 ∈ (Clsd‘𝑅) → ( 𝑅𝐴) ∈ 𝑅)
2019adantr 480 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( 𝑅𝐴) ∈ 𝑅)
213topopn 22933 . . . . . 6 (𝑆 ∈ Top → 𝑆𝑆)
2218, 21syl 17 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑆𝑆)
23 txopn 23631 . . . . 5 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (( 𝑅𝐴) ∈ 𝑅 𝑆𝑆)) → (( 𝑅𝐴) × 𝑆) ∈ (𝑅 ×t 𝑆))
2417, 18, 20, 22, 23syl22anc 838 . . . 4 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (( 𝑅𝐴) × 𝑆) ∈ (𝑅 ×t 𝑆))
251topopn 22933 . . . . . 6 (𝑅 ∈ Top → 𝑅𝑅)
2617, 25syl 17 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → 𝑅𝑅)
273cldopn 23060 . . . . . 6 (𝐵 ∈ (Clsd‘𝑆) → ( 𝑆𝐵) ∈ 𝑆)
2827adantl 481 . . . . 5 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( 𝑆𝐵) ∈ 𝑆)
29 txopn 23631 . . . . 5 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ ( 𝑅𝑅 ∧ ( 𝑆𝐵) ∈ 𝑆)) → ( 𝑅 × ( 𝑆𝐵)) ∈ (𝑅 ×t 𝑆))
3017, 18, 26, 28, 29syl22anc 838 . . . 4 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( 𝑅 × ( 𝑆𝐵)) ∈ (𝑅 ×t 𝑆))
31 unopn 22930 . . . 4 (((𝑅 ×t 𝑆) ∈ Top ∧ (( 𝑅𝐴) × 𝑆) ∈ (𝑅 ×t 𝑆) ∧ ( 𝑅 × ( 𝑆𝐵)) ∈ (𝑅 ×t 𝑆)) → ((( 𝑅𝐴) × 𝑆) ∪ ( 𝑅 × ( 𝑆𝐵))) ∈ (𝑅 ×t 𝑆))
3216, 24, 30, 31syl3anc 1371 . . 3 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ((( 𝑅𝐴) × 𝑆) ∪ ( 𝑅 × ( 𝑆𝐵))) ∈ (𝑅 ×t 𝑆))
3314, 32eqeltrrd 2845 . 2 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)) ∈ (𝑅 ×t 𝑆))
34 eqid 2740 . . . 4 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
3534iscld 23056 . . 3 ((𝑅 ×t 𝑆) ∈ Top → ((𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)) ↔ ((𝐴 × 𝐵) ⊆ (𝑅 ×t 𝑆) ∧ ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)) ∈ (𝑅 ×t 𝑆))))
3616, 35syl 17 . 2 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → ((𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)) ↔ ((𝐴 × 𝐵) ⊆ (𝑅 ×t 𝑆) ∧ ( (𝑅 ×t 𝑆) ∖ (𝐴 × 𝐵)) ∈ (𝑅 ×t 𝑆))))
3711, 33, 36mpbir2and 712 1 ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cdif 3973  cun 3974  wss 3976   cuni 4931   × cxp 5698  cfv 6573  (class class class)co 7448  Topctop 22920  Clsdccld 23045   ×t ctx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-tx 23591
This theorem is referenced by:  txcls  23633  cnmpopc  24974  sxbrsigalem3  34237
  Copyright terms: Public domain W3C validator