MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccld Structured version   Visualization version   GIF version

Theorem icccld 23372
Description: Closed intervals are closed sets of the standard topology on . (Contributed by FL, 14-Sep-2007.)
Assertion
Ref Expression
icccld ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem icccld
StepHypRef Expression
1 difreicc 12862 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
2 retop 23367 . . . 4 (topGen‘ran (,)) ∈ Top
3 iooretop 23371 . . . 4 (-∞(,)𝐴) ∈ (topGen‘ran (,))
4 iooretop 23371 . . . 4 (𝐵(,)+∞) ∈ (topGen‘ran (,))
5 unopn 21508 . . . 4 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,)) ∧ (𝐵(,)+∞) ∈ (topGen‘ran (,))) → ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ (topGen‘ran (,)))
62, 3, 4, 5mp3an 1458 . . 3 ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ (topGen‘ran (,))
71, 6eqeltrdi 2898 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
8 iccssre 12807 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
9 uniretop 23368 . . . 4 ℝ = (topGen‘ran (,))
109iscld2 21633 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (𝐴[,]𝐵)) ∈ (topGen‘ran (,))))
112, 8, 10sylancr 590 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (𝐴[,]𝐵)) ∈ (topGen‘ran (,))))
127, 11mpbird 260 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  cdif 3878  cun 3879  wss 3881  ran crn 5520  cfv 6324  (class class class)co 7135  cr 10525  +∞cpnf 10661  -∞cmnf 10662  (,)cioo 12726  [,]cicc 12729  topGenctg 16703  Topctop 21498  Clsdccld 21621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-ioo 12730  df-icc 12733  df-topgen 16709  df-top 21499  df-bases 21551  df-cld 21624
This theorem is referenced by:  cnmpopc  23533  cvmliftlem10  32654  mblfinlem1  35094  mblfinlem2  35095  icccmpALT  35279
  Copyright terms: Public domain W3C validator