MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccld Structured version   Visualization version   GIF version

Theorem icccld 24787
Description: Closed intervals are closed sets of the standard topology on . (Contributed by FL, 14-Sep-2007.)
Assertion
Ref Expression
icccld ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem icccld
StepHypRef Expression
1 difreicc 13524 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
2 retop 24782 . . . 4 (topGen‘ran (,)) ∈ Top
3 iooretop 24786 . . . 4 (-∞(,)𝐴) ∈ (topGen‘ran (,))
4 iooretop 24786 . . . 4 (𝐵(,)+∞) ∈ (topGen‘ran (,))
5 unopn 22909 . . . 4 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,)) ∧ (𝐵(,)+∞) ∈ (topGen‘ran (,))) → ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ (topGen‘ran (,)))
62, 3, 4, 5mp3an 1463 . . 3 ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ (topGen‘ran (,))
71, 6eqeltrdi 2849 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
8 iccssre 13469 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
9 uniretop 24783 . . . 4 ℝ = (topGen‘ran (,))
109iscld2 23036 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (𝐴[,]𝐵)) ∈ (topGen‘ran (,))))
112, 8, 10sylancr 587 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (𝐴[,]𝐵)) ∈ (topGen‘ran (,))))
127, 11mpbird 257 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  cdif 3948  cun 3949  wss 3951  ran crn 5686  cfv 6561  (class class class)co 7431  cr 11154  +∞cpnf 11292  -∞cmnf 11293  (,)cioo 13387  [,]cicc 13390  topGenctg 17482  Topctop 22899  Clsdccld 23024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-ioo 13391  df-icc 13394  df-topgen 17488  df-top 22900  df-bases 22953  df-cld 23027
This theorem is referenced by:  cnmpopc  24955  cvmliftlem10  35299  mblfinlem1  37664  mblfinlem2  37665  icccmpALT  37848
  Copyright terms: Public domain W3C validator