Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinopn Structured version   Visualization version   GIF version

Theorem iinopn 21514
 Description: The intersection of a nonempty finite family of open sets is open. (Contributed by Mario Carneiro, 14-Sep-2014.)
Assertion
Ref Expression
iinopn ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr3 1193 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → ∀𝑥𝐴 𝐵𝐽)
2 dfiin2g 4919 . . 3 (∀𝑥𝐴 𝐵𝐽 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
31, 2syl 17 . 2 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
4 simpl 486 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝐽 ∈ Top)
5 eqid 2798 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
65rnmpt 5791 . . . 4 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
75fmpt 6851 . . . . . 6 (∀𝑥𝐴 𝐵𝐽 ↔ (𝑥𝐴𝐵):𝐴𝐽)
81, 7sylib 221 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → (𝑥𝐴𝐵):𝐴𝐽)
98frnd 6494 . . . 4 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → ran (𝑥𝐴𝐵) ⊆ 𝐽)
106, 9eqsstrrid 3964 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽)
118fdmd 6497 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → dom (𝑥𝐴𝐵) = 𝐴)
12 simpr2 1192 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝐴 ≠ ∅)
1311, 12eqnetrd 3054 . . . 4 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → dom (𝑥𝐴𝐵) ≠ ∅)
14 dm0rn0 5759 . . . . . 6 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
156eqeq1i 2803 . . . . . 6 (ran (𝑥𝐴𝐵) = ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = ∅)
1614, 15bitri 278 . . . . 5 (dom (𝑥𝐴𝐵) = ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = ∅)
1716necon3bii 3039 . . . 4 (dom (𝑥𝐴𝐵) ≠ ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅)
1813, 17sylib 221 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅)
19 simpr1 1191 . . . 4 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝐴 ∈ Fin)
20 abrexfi 8810 . . . 4 (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)
2119, 20syl 17 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)
22 fiinopn 21513 . . . 4 (𝐽 ∈ Top → (({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽 ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽))
2322imp 410 . . 3 ((𝐽 ∈ Top ∧ ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽 ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
244, 10, 18, 21, 23syl13anc 1369 . 2 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
253, 24eqeltrd 2890 1 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵𝐽)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {cab 2776   ≠ wne 2987  ∀wral 3106  ∃wrex 3107   ⊆ wss 3881  ∅c0 4243  ∩ cint 4838  ∩ ciin 4882   ↦ cmpt 5110  dom cdm 5519  ran crn 5520  ⟶wf 6320  Fincfn 8494  Topctop 21505 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-en 8495  df-dom 8496  df-fin 8498  df-top 21506 This theorem is referenced by:  riinopn  21520  subbascn  21866
 Copyright terms: Public domain W3C validator