MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinopn Structured version   Visualization version   GIF version

Theorem iinopn 22815
Description: The intersection of a nonempty finite family of open sets is open. (Contributed by Mario Carneiro, 14-Sep-2014.)
Assertion
Ref Expression
iinopn ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr3 1197 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → ∀𝑥𝐴 𝐵𝐽)
2 dfiin2g 4981 . . 3 (∀𝑥𝐴 𝐵𝐽 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
31, 2syl 17 . 2 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
4 simpl 482 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝐽 ∈ Top)
5 eqid 2731 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
65rnmpt 5897 . . . 4 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
75fmpt 7043 . . . . . 6 (∀𝑥𝐴 𝐵𝐽 ↔ (𝑥𝐴𝐵):𝐴𝐽)
81, 7sylib 218 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → (𝑥𝐴𝐵):𝐴𝐽)
98frnd 6659 . . . 4 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → ran (𝑥𝐴𝐵) ⊆ 𝐽)
106, 9eqsstrrid 3974 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽)
118fdmd 6661 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → dom (𝑥𝐴𝐵) = 𝐴)
12 simpr2 1196 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝐴 ≠ ∅)
1311, 12eqnetrd 2995 . . . 4 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → dom (𝑥𝐴𝐵) ≠ ∅)
14 dm0rn0 5864 . . . . . 6 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
156eqeq1i 2736 . . . . . 6 (ran (𝑥𝐴𝐵) = ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = ∅)
1614, 15bitri 275 . . . . 5 (dom (𝑥𝐴𝐵) = ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = ∅)
1716necon3bii 2980 . . . 4 (dom (𝑥𝐴𝐵) ≠ ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅)
1813, 17sylib 218 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅)
19 simpr1 1195 . . . 4 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝐴 ∈ Fin)
20 abrexfi 9236 . . . 4 (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)
2119, 20syl 17 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)
22 fiinopn 22814 . . . 4 (𝐽 ∈ Top → (({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽 ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽))
2322imp 406 . . 3 ((𝐽 ∈ Top ∧ ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽 ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
244, 10, 18, 21, 23syl13anc 1374 . 2 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
253, 24eqeltrd 2831 1 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  wss 3902  c0 4283   cint 4897   ciin 4942  cmpt 5172  dom cdm 5616  ran crn 5617  wf 6477  Fincfn 8869  Topctop 22806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-en 8870  df-dom 8871  df-fin 8873  df-top 22807
This theorem is referenced by:  riinopn  22821  subbascn  23167
  Copyright terms: Public domain W3C validator