MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinopn Structured version   Visualization version   GIF version

Theorem iinopn 22929
Description: The intersection of a nonempty finite family of open sets is open. (Contributed by Mario Carneiro, 14-Sep-2014.)
Assertion
Ref Expression
iinopn ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr3 1196 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → ∀𝑥𝐴 𝐵𝐽)
2 dfiin2g 5055 . . 3 (∀𝑥𝐴 𝐵𝐽 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
31, 2syl 17 . 2 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
4 simpl 482 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝐽 ∈ Top)
5 eqid 2740 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
65rnmpt 5980 . . . 4 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
75fmpt 7144 . . . . . 6 (∀𝑥𝐴 𝐵𝐽 ↔ (𝑥𝐴𝐵):𝐴𝐽)
81, 7sylib 218 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → (𝑥𝐴𝐵):𝐴𝐽)
98frnd 6755 . . . 4 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → ran (𝑥𝐴𝐵) ⊆ 𝐽)
106, 9eqsstrrid 4058 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽)
118fdmd 6757 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → dom (𝑥𝐴𝐵) = 𝐴)
12 simpr2 1195 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝐴 ≠ ∅)
1311, 12eqnetrd 3014 . . . 4 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → dom (𝑥𝐴𝐵) ≠ ∅)
14 dm0rn0 5949 . . . . . 6 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
156eqeq1i 2745 . . . . . 6 (ran (𝑥𝐴𝐵) = ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = ∅)
1614, 15bitri 275 . . . . 5 (dom (𝑥𝐴𝐵) = ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = ∅)
1716necon3bii 2999 . . . 4 (dom (𝑥𝐴𝐵) ≠ ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅)
1813, 17sylib 218 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅)
19 simpr1 1194 . . . 4 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝐴 ∈ Fin)
20 abrexfi 9422 . . . 4 (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)
2119, 20syl 17 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)
22 fiinopn 22928 . . . 4 (𝐽 ∈ Top → (({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽 ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽))
2322imp 406 . . 3 ((𝐽 ∈ Top ∧ ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽 ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
244, 10, 18, 21, 23syl13anc 1372 . 2 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
253, 24eqeltrd 2844 1 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   cint 4970   ciin 5016  cmpt 5249  dom cdm 5700  ran crn 5701  wf 6569  Fincfn 9003  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-2o 8523  df-en 9004  df-dom 9005  df-fin 9007  df-top 22921
This theorem is referenced by:  riinopn  22935  subbascn  23283
  Copyright terms: Public domain W3C validator