| Step | Hyp | Ref
| Expression |
| 1 | | simpr3 1197 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) |
| 2 | | dfiin2g 5032 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐽 → ∩
𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| 4 | | simpl 482 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → 𝐽 ∈ Top) |
| 5 | | eqid 2737 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 6 | 5 | rnmpt 5968 |
. . . 4
⊢ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| 7 | 5 | fmpt 7130 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐽 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐽) |
| 8 | 1, 7 | sylib 218 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐽) |
| 9 | 8 | frnd 6744 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐽) |
| 10 | 6, 9 | eqsstrrid 4023 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐽) |
| 11 | 8 | fdmd 6746 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 12 | | simpr2 1196 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → 𝐴 ≠ ∅) |
| 13 | 11, 12 | eqnetrd 3008 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
| 14 | | dm0rn0 5935 |
. . . . . 6
⊢ (dom
(𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅) |
| 15 | 6 | eqeq1i 2742 |
. . . . . 6
⊢ (ran
(𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = ∅) |
| 16 | 14, 15 | bitri 275 |
. . . . 5
⊢ (dom
(𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = ∅) |
| 17 | 16 | necon3bii 2993 |
. . . 4
⊢ (dom
(𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅ ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅) |
| 18 | 13, 17 | sylib 218 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅) |
| 19 | | simpr1 1195 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → 𝐴 ∈ Fin) |
| 20 | | abrexfi 9392 |
. . . 4
⊢ (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ Fin) |
| 21 | 19, 20 | syl 17 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ Fin) |
| 22 | | fiinopn 22907 |
. . . 4
⊢ (𝐽 ∈ Top → (({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐽 ∧ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅ ∧ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ Fin) → ∩ {𝑦
∣ ∃𝑥 ∈
𝐴 𝑦 = 𝐵} ∈ 𝐽)) |
| 23 | 22 | imp 406 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐽 ∧ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅ ∧ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ Fin)) → ∩ {𝑦
∣ ∃𝑥 ∈
𝐴 𝑦 = 𝐵} ∈ 𝐽) |
| 24 | 4, 10, 18, 21, 23 | syl13anc 1374 |
. 2
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → ∩
{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ 𝐽) |
| 25 | 3, 24 | eqeltrd 2841 |
1
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) |