Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toplatjoin Structured version   Visualization version   GIF version

Theorem toplatjoin 48976
Description: Joins in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.)
Hypotheses
Ref Expression
toplatmeet.i 𝐼 = (toInc‘𝐽)
toplatmeet.j (𝜑𝐽 ∈ Top)
toplatmeet.a (𝜑𝐴𝐽)
toplatmeet.b (𝜑𝐵𝐽)
toplatjoin.j = (join‘𝐼)
Assertion
Ref Expression
toplatjoin (𝜑 → (𝐴 𝐵) = (𝐴𝐵))

Proof of Theorem toplatjoin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (lub‘𝐼) = (lub‘𝐼)
2 toplatjoin.j . . 3 = (join‘𝐼)
3 toplatmeet.i . . . . 5 𝐼 = (toInc‘𝐽)
43ipopos 18546 . . . 4 𝐼 ∈ Poset
54a1i 11 . . 3 (𝜑𝐼 ∈ Poset)
6 toplatmeet.a . . 3 (𝜑𝐴𝐽)
7 toplatmeet.b . . 3 (𝜑𝐵𝐽)
81, 2, 5, 6, 7joinval 18387 . 2 (𝜑 → (𝐴 𝐵) = ((lub‘𝐼)‘{𝐴, 𝐵}))
9 toplatmeet.j . . 3 (𝜑𝐽 ∈ Top)
106, 7prssd 4798 . . 3 (𝜑 → {𝐴, 𝐵} ⊆ 𝐽)
111a1i 11 . . 3 (𝜑 → (lub‘𝐼) = (lub‘𝐼))
12 uniprg 4899 . . . . . . 7 ((𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} = (𝐴𝐵))
136, 7, 12syl2anc 584 . . . . . 6 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
14 unopn 22841 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
159, 6, 7, 14syl3anc 1373 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ 𝐽)
1613, 15eqeltrd 2834 . . . . 5 (𝜑 {𝐴, 𝐵} ∈ 𝐽)
17 intmin 4944 . . . . 5 ( {𝐴, 𝐵} ∈ 𝐽 {𝑥𝐽 {𝐴, 𝐵} ⊆ 𝑥} = {𝐴, 𝐵})
1816, 17syl 17 . . . 4 (𝜑 {𝑥𝐽 {𝐴, 𝐵} ⊆ 𝑥} = {𝐴, 𝐵})
1918, 13eqtr2d 2771 . . 3 (𝜑 → (𝐴𝐵) = {𝑥𝐽 {𝐴, 𝐵} ⊆ 𝑥})
203, 9, 10, 11, 19, 15ipolub 48962 . 2 (𝜑 → ((lub‘𝐼)‘{𝐴, 𝐵}) = (𝐴𝐵))
218, 20eqtrd 2770 1 (𝜑 → (𝐴 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3415  cun 3924  wss 3926  {cpr 4603   cuni 4883   cint 4922  cfv 6531  (class class class)co 7405  Posetcpo 18319  lubclub 18321  joincjn 18323  toInccipo 18537  Topctop 22831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-tset 17290  df-ple 17291  df-ocomp 17292  df-proset 18306  df-poset 18325  df-lub 18356  df-join 18358  df-ipo 18538  df-top 22832
This theorem is referenced by:  topdlat  48978
  Copyright terms: Public domain W3C validator