MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniopn Structured version   Visualization version   GIF version

Theorem uniopn 22812
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
uniopn ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝐽)

Proof of Theorem uniopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istopg 22810 . . . . 5 (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
21ibi 267 . . . 4 (𝐽 ∈ Top → (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
32simpld 494 . . 3 (𝐽 ∈ Top → ∀𝑥(𝑥𝐽 𝑥𝐽))
4 elpw2g 5269 . . . . . . . 8 (𝐽 ∈ Top → (𝐴 ∈ 𝒫 𝐽𝐴𝐽))
54biimpar 477 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴 ∈ 𝒫 𝐽)
6 sseq1 3955 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝐽𝐴𝐽))
7 unieq 4867 . . . . . . . . . 10 (𝑥 = 𝐴 𝑥 = 𝐴)
87eleq1d 2816 . . . . . . . . 9 (𝑥 = 𝐴 → ( 𝑥𝐽 𝐴𝐽))
96, 8imbi12d 344 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥𝐽 𝑥𝐽) ↔ (𝐴𝐽 𝐴𝐽)))
109spcgv 3546 . . . . . . 7 (𝐴 ∈ 𝒫 𝐽 → (∀𝑥(𝑥𝐽 𝑥𝐽) → (𝐴𝐽 𝐴𝐽)))
115, 10syl 17 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (∀𝑥(𝑥𝐽 𝑥𝐽) → (𝐴𝐽 𝐴𝐽)))
1211com23 86 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐴𝐽 → (∀𝑥(𝑥𝐽 𝑥𝐽) → 𝐴𝐽)))
1312ex 412 . . . 4 (𝐽 ∈ Top → (𝐴𝐽 → (𝐴𝐽 → (∀𝑥(𝑥𝐽 𝑥𝐽) → 𝐴𝐽))))
1413pm2.43d 53 . . 3 (𝐽 ∈ Top → (𝐴𝐽 → (∀𝑥(𝑥𝐽 𝑥𝐽) → 𝐴𝐽)))
153, 14mpid 44 . 2 (𝐽 ∈ Top → (𝐴𝐽 𝐴𝐽))
1615imp 406 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2111  wral 3047  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856  Topctop 22808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-pw 4549  df-uni 4857  df-top 22809
This theorem is referenced by:  iunopn  22813  unopn  22818  0opn  22819  topopn  22821  tgtop  22888  ntropn  22964  toponmre  23008  neips  23028  txcmplem1  23556  unimopn  24411  metrest  24439  cnopn  24701  locfinreflem  33853  cvmscld  35317  mblfinlem3  37707  mblfinlem4  37708  ismblfin  37709  topclat  49037  toplatlub  49039
  Copyright terms: Public domain W3C validator