MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniopn Structured version   Visualization version   GIF version

Theorem uniopn 22791
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
uniopn ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝐽)

Proof of Theorem uniopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istopg 22789 . . . . 5 (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
21ibi 267 . . . 4 (𝐽 ∈ Top → (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
32simpld 494 . . 3 (𝐽 ∈ Top → ∀𝑥(𝑥𝐽 𝑥𝐽))
4 elpw2g 5291 . . . . . . . 8 (𝐽 ∈ Top → (𝐴 ∈ 𝒫 𝐽𝐴𝐽))
54biimpar 477 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴 ∈ 𝒫 𝐽)
6 sseq1 3975 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝐽𝐴𝐽))
7 unieq 4885 . . . . . . . . . 10 (𝑥 = 𝐴 𝑥 = 𝐴)
87eleq1d 2814 . . . . . . . . 9 (𝑥 = 𝐴 → ( 𝑥𝐽 𝐴𝐽))
96, 8imbi12d 344 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥𝐽 𝑥𝐽) ↔ (𝐴𝐽 𝐴𝐽)))
109spcgv 3565 . . . . . . 7 (𝐴 ∈ 𝒫 𝐽 → (∀𝑥(𝑥𝐽 𝑥𝐽) → (𝐴𝐽 𝐴𝐽)))
115, 10syl 17 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (∀𝑥(𝑥𝐽 𝑥𝐽) → (𝐴𝐽 𝐴𝐽)))
1211com23 86 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐴𝐽 → (∀𝑥(𝑥𝐽 𝑥𝐽) → 𝐴𝐽)))
1312ex 412 . . . 4 (𝐽 ∈ Top → (𝐴𝐽 → (𝐴𝐽 → (∀𝑥(𝑥𝐽 𝑥𝐽) → 𝐴𝐽))))
1413pm2.43d 53 . . 3 (𝐽 ∈ Top → (𝐴𝐽 → (∀𝑥(𝑥𝐽 𝑥𝐽) → 𝐴𝐽)))
153, 14mpid 44 . 2 (𝐽 ∈ Top → (𝐴𝐽 𝐴𝐽))
1615imp 406 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3045  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874  Topctop 22787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-in 3924  df-ss 3934  df-pw 4568  df-uni 4875  df-top 22788
This theorem is referenced by:  iunopn  22792  unopn  22797  0opn  22798  topopn  22800  tgtop  22867  ntropn  22943  toponmre  22987  neips  23007  txcmplem1  23535  unimopn  24391  metrest  24419  cnopn  24681  locfinreflem  33837  cvmscld  35267  mblfinlem3  37660  mblfinlem4  37661  ismblfin  37662  topclat  48990  toplatlub  48992
  Copyright terms: Public domain W3C validator