| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniopn | Structured version Visualization version GIF version | ||
| Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
| Ref | Expression |
|---|---|
| uniopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopg 22901 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | |
| 2 | 1 | ibi 267 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽)) |
| 4 | elpw2g 5333 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝒫 𝐽 ↔ 𝐴 ⊆ 𝐽)) | |
| 5 | 4 | biimpar 477 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → 𝐴 ∈ 𝒫 𝐽) |
| 6 | sseq1 4009 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐽 ↔ 𝐴 ⊆ 𝐽)) | |
| 7 | unieq 4918 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 8 | 7 | eleq1d 2826 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ 𝐽 ↔ ∪ 𝐴 ∈ 𝐽)) |
| 9 | 6, 8 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
| 10 | 9 | spcgv 3596 | . . . . . . 7 ⊢ (𝐴 ∈ 𝒫 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
| 11 | 5, 10 | syl 17 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
| 12 | 11 | com23 86 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽))) |
| 13 | 12 | ex 412 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽)))) |
| 14 | 13 | pm2.43d 53 | . . 3 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽))) |
| 15 | 3, 14 | mpid 44 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽)) |
| 16 | 15 | imp 406 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 ∪ cuni 4907 Topctop 22899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-in 3958 df-ss 3968 df-pw 4602 df-uni 4908 df-top 22900 |
| This theorem is referenced by: iunopn 22904 unopn 22909 0opn 22910 topopn 22912 tgtop 22980 ntropn 23057 toponmre 23101 neips 23121 txcmplem1 23649 unimopn 24509 metrest 24537 cnopn 24807 locfinreflem 33839 cvmscld 35278 mblfinlem3 37666 mblfinlem4 37667 ismblfin 37668 topclat 48887 toplatlub 48889 |
| Copyright terms: Public domain | W3C validator |