![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniopn | Structured version Visualization version GIF version |
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
uniopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopg 21077 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | |
2 | 1 | ibi 259 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
3 | 2 | simpld 490 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽)) |
4 | elpw2g 5051 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝒫 𝐽 ↔ 𝐴 ⊆ 𝐽)) | |
5 | 4 | biimpar 471 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → 𝐴 ∈ 𝒫 𝐽) |
6 | sseq1 3851 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐽 ↔ 𝐴 ⊆ 𝐽)) | |
7 | unieq 4668 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
8 | 7 | eleq1d 2891 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ 𝐽 ↔ ∪ 𝐴 ∈ 𝐽)) |
9 | 6, 8 | imbi12d 336 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
10 | 9 | spcgv 3510 | . . . . . . 7 ⊢ (𝐴 ∈ 𝒫 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
11 | 5, 10 | syl 17 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
12 | 11 | com23 86 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽))) |
13 | 12 | ex 403 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽)))) |
14 | 13 | pm2.43d 53 | . . 3 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽))) |
15 | 3, 14 | mpid 44 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽)) |
16 | 15 | imp 397 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∀wal 1654 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ∩ cin 3797 ⊆ wss 3798 𝒫 cpw 4380 ∪ cuni 4660 Topctop 21075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 ax-sep 5007 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-v 3416 df-in 3805 df-ss 3812 df-pw 4382 df-uni 4661 df-top 21076 |
This theorem is referenced by: iunopn 21080 unopn 21085 0opn 21086 topopn 21088 tgtop 21155 ntropn 21231 toponmre 21275 neips 21295 txcmplem1 21822 unimopn 22678 metrest 22706 cnopn 22967 locfinreflem 30448 cvmscld 31797 mblfinlem3 33987 mblfinlem4 33988 ismblfin 33989 |
Copyright terms: Public domain | W3C validator |