MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrle Structured version   Visualization version   GIF version

Theorem dgrle 26148
Description: Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrle.2 (𝜑𝑁 ∈ ℕ0)
dgrle.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
dgrle.4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
Assertion
Ref Expression
dgrle (𝜑 → (deg‘𝐹) ≤ 𝑁)
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem dgrle
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgrle.2 . 2 (𝜑𝑁 ∈ ℕ0)
3 dgrle.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
4 dgrle.4 . . . . . . . . . 10 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
51, 2, 3, 4coeeq2 26147 . . . . . . . . 9 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
65ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
76fveq1d 6860 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → ((coeff‘𝐹)‘𝑚) = ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚))
8 nfcv 2891 . . . . . . . . . 10 𝑘𝑚
9 nfv 1914 . . . . . . . . . . 11 𝑘 ¬ 𝑚𝑁
10 nffvmpt1 6869 . . . . . . . . . . . 12 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚)
1110nfeq1 2907 . . . . . . . . . . 11 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0
129, 11nfim 1896 . . . . . . . . . 10 𝑘𝑚𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)
13 breq1 5110 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑘𝑁𝑚𝑁))
1413notbid 318 . . . . . . . . . . 11 (𝑘 = 𝑚 → (¬ 𝑘𝑁 ↔ ¬ 𝑚𝑁))
15 fveqeq2 6867 . . . . . . . . . . 11 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0))
1614, 15imbi12d 344 . . . . . . . . . 10 (𝑘 = 𝑚 → ((¬ 𝑘𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0) ↔ (¬ 𝑚𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)))
17 iffalse 4497 . . . . . . . . . . . . 13 𝑘𝑁 → if(𝑘𝑁, 𝐴, 0) = 0)
1817fveq2d 6862 . . . . . . . . . . . 12 𝑘𝑁 → ( I ‘if(𝑘𝑁, 𝐴, 0)) = ( I ‘0))
19 0cn 11166 . . . . . . . . . . . . 13 0 ∈ ℂ
20 fvi 6937 . . . . . . . . . . . . 13 (0 ∈ ℂ → ( I ‘0) = 0)
2119, 20ax-mp 5 . . . . . . . . . . . 12 ( I ‘0) = 0
2218, 21eqtrdi 2780 . . . . . . . . . . 11 𝑘𝑁 → ( I ‘if(𝑘𝑁, 𝐴, 0)) = 0)
23 eqid 2729 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))
2423fvmpt2i 6978 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = ( I ‘if(𝑘𝑁, 𝐴, 0)))
2524eqeq1d 2731 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ( I ‘if(𝑘𝑁, 𝐴, 0)) = 0))
2622, 25imbitrrid 246 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (¬ 𝑘𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0))
278, 12, 16, 26vtoclgaf 3542 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (¬ 𝑚𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0))
2827imp 406 . . . . . . . 8 ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)
2928adantll 714 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)
307, 29eqtrd 2764 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → ((coeff‘𝐹)‘𝑚) = 0)
3130ex 412 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → (¬ 𝑚𝑁 → ((coeff‘𝐹)‘𝑚) = 0))
3231necon1ad 2942 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁))
3332ralrimiva 3125 . . 3 (𝜑 → ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁))
34 eqid 2729 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
3534coef3 26137 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
361, 35syl 17 . . . 4 (𝜑 → (coeff‘𝐹):ℕ0⟶ℂ)
37 plyco0 26097 . . . 4 ((𝑁 ∈ ℕ0 ∧ (coeff‘𝐹):ℕ0⟶ℂ) → (((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁)))
382, 36, 37syl2anc 584 . . 3 (𝜑 → (((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁)))
3933, 38mpbird 257 . 2 (𝜑 → ((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0})
40 eqid 2729 . . 3 (deg‘𝐹) = (deg‘𝐹)
4134, 40dgrlb 26141 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0}) → (deg‘𝐹) ≤ 𝑁)
421, 2, 39, 41syl3anc 1373 1 (𝜑 → (deg‘𝐹) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  ifcif 4488  {csn 4589   class class class wbr 5107  cmpt 5188   I cid 5532  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cle 11209  0cn0 12442  cuz 12793  ...cfz 13468  cexp 14026  Σcsu 15652  Polycply 26089  coeffccoe 26091  degcdgr 26092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-0p 25571  df-ply 26093  df-coe 26095  df-dgr 26096
This theorem is referenced by:  dgreq  26149  0dgr  26150  coeaddlem  26154  coemullem  26155  taylply2  26275  taylply2OLD  26276
  Copyright terms: Public domain W3C validator