| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrle | Structured version Visualization version GIF version | ||
| Description: Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrle.1 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| dgrle.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| dgrle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
| dgrle.4 | ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) |
| Ref | Expression |
|---|---|
| dgrle | ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dgrle.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 2 | dgrle.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | dgrle.3 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) | |
| 4 | dgrle.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) | |
| 5 | 1, 2, 3, 4 | coeeq2 26147 | . . . . . . . . 9 ⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |
| 6 | 5 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |
| 7 | 6 | fveq1d 6860 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((coeff‘𝐹)‘𝑚) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚)) |
| 8 | nfcv 2891 | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝑚 | |
| 9 | nfv 1914 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 ¬ 𝑚 ≤ 𝑁 | |
| 10 | nffvmpt1 6869 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) | |
| 11 | 10 | nfeq1 2907 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0 |
| 12 | 9, 11 | nfim 1896 | . . . . . . . . . 10 ⊢ Ⅎ𝑘(¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
| 13 | breq1 5110 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑚 → (𝑘 ≤ 𝑁 ↔ 𝑚 ≤ 𝑁)) | |
| 14 | 13 | notbid 318 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (¬ 𝑘 ≤ 𝑁 ↔ ¬ 𝑚 ≤ 𝑁)) |
| 15 | fveqeq2 6867 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0)) | |
| 16 | 14, 15 | imbi12d 344 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑚 → ((¬ 𝑘 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0) ↔ (¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0))) |
| 17 | iffalse 4497 | . . . . . . . . . . . . 13 ⊢ (¬ 𝑘 ≤ 𝑁 → if(𝑘 ≤ 𝑁, 𝐴, 0) = 0) | |
| 18 | 17 | fveq2d 6862 | . . . . . . . . . . . 12 ⊢ (¬ 𝑘 ≤ 𝑁 → ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = ( I ‘0)) |
| 19 | 0cn 11166 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℂ | |
| 20 | fvi 6937 | . . . . . . . . . . . . 13 ⊢ (0 ∈ ℂ → ( I ‘0) = 0) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ( I ‘0) = 0 |
| 22 | 18, 21 | eqtrdi 2780 | . . . . . . . . . . 11 ⊢ (¬ 𝑘 ≤ 𝑁 → ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = 0) |
| 23 | eqid 2729 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) | |
| 24 | 23 | fvmpt2i 6978 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0))) |
| 25 | 24 | eqeq1d 2731 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = 0)) |
| 26 | 22, 25 | imbitrrid 246 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (¬ 𝑘 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0)) |
| 27 | 8, 12, 16, 26 | vtoclgaf 3542 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ0 → (¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0)) |
| 28 | 27 | imp 406 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ≤ 𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
| 29 | 28 | adantll 714 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
| 30 | 7, 29 | eqtrd 2764 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((coeff‘𝐹)‘𝑚) = 0) |
| 31 | 30 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (¬ 𝑚 ≤ 𝑁 → ((coeff‘𝐹)‘𝑚) = 0)) |
| 32 | 31 | necon1ad 2942 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
| 33 | 32 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
| 34 | eqid 2729 | . . . . . 6 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 35 | 34 | coef3 26137 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ) |
| 36 | 1, 35 | syl 17 | . . . 4 ⊢ (𝜑 → (coeff‘𝐹):ℕ0⟶ℂ) |
| 37 | plyco0 26097 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (coeff‘𝐹):ℕ0⟶ℂ) → (((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) | |
| 38 | 2, 36, 37 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) |
| 39 | 33, 38 | mpbird 257 | . 2 ⊢ (𝜑 → ((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0}) |
| 40 | eqid 2729 | . . 3 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
| 41 | 34, 40 | dgrlb 26141 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0}) → (deg‘𝐹) ≤ 𝑁) |
| 42 | 1, 2, 39, 41 | syl3anc 1373 | 1 ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ifcif 4488 {csn 4589 class class class wbr 5107 ↦ cmpt 5188 I cid 5532 “ cima 5641 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 ≤ cle 11209 ℕ0cn0 12442 ℤ≥cuz 12793 ...cfz 13468 ↑cexp 14026 Σcsu 15652 Polycply 26089 coeffccoe 26091 degcdgr 26092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-0p 25571 df-ply 26093 df-coe 26095 df-dgr 26096 |
| This theorem is referenced by: dgreq 26149 0dgr 26150 coeaddlem 26154 coemullem 26155 taylply2 26275 taylply2OLD 26276 |
| Copyright terms: Public domain | W3C validator |