Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrle Structured version   Visualization version   GIF version

Theorem dgrle 24944
 Description: Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrle.2 (𝜑𝑁 ∈ ℕ0)
dgrle.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
dgrle.4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
Assertion
Ref Expression
dgrle (𝜑 → (deg‘𝐹) ≤ 𝑁)
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem dgrle
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgrle.2 . 2 (𝜑𝑁 ∈ ℕ0)
3 dgrle.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
4 dgrle.4 . . . . . . . . . 10 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
51, 2, 3, 4coeeq2 24943 . . . . . . . . 9 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
65ad2antrr 725 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
76fveq1d 6664 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → ((coeff‘𝐹)‘𝑚) = ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚))
8 nfcv 2919 . . . . . . . . . 10 𝑘𝑚
9 nfv 1915 . . . . . . . . . . 11 𝑘 ¬ 𝑚𝑁
10 nffvmpt1 6673 . . . . . . . . . . . 12 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚)
1110nfeq1 2934 . . . . . . . . . . 11 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0
129, 11nfim 1897 . . . . . . . . . 10 𝑘𝑚𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)
13 breq1 5038 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑘𝑁𝑚𝑁))
1413notbid 321 . . . . . . . . . . 11 (𝑘 = 𝑚 → (¬ 𝑘𝑁 ↔ ¬ 𝑚𝑁))
15 fveqeq2 6671 . . . . . . . . . . 11 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0))
1614, 15imbi12d 348 . . . . . . . . . 10 (𝑘 = 𝑚 → ((¬ 𝑘𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0) ↔ (¬ 𝑚𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)))
17 iffalse 4432 . . . . . . . . . . . . 13 𝑘𝑁 → if(𝑘𝑁, 𝐴, 0) = 0)
1817fveq2d 6666 . . . . . . . . . . . 12 𝑘𝑁 → ( I ‘if(𝑘𝑁, 𝐴, 0)) = ( I ‘0))
19 0cn 10676 . . . . . . . . . . . . 13 0 ∈ ℂ
20 fvi 6732 . . . . . . . . . . . . 13 (0 ∈ ℂ → ( I ‘0) = 0)
2119, 20ax-mp 5 . . . . . . . . . . . 12 ( I ‘0) = 0
2218, 21eqtrdi 2809 . . . . . . . . . . 11 𝑘𝑁 → ( I ‘if(𝑘𝑁, 𝐴, 0)) = 0)
23 eqid 2758 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))
2423fvmpt2i 6773 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = ( I ‘if(𝑘𝑁, 𝐴, 0)))
2524eqeq1d 2760 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ( I ‘if(𝑘𝑁, 𝐴, 0)) = 0))
2622, 25syl5ibr 249 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (¬ 𝑘𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0))
278, 12, 16, 26vtoclgaf 3493 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (¬ 𝑚𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0))
2827imp 410 . . . . . . . 8 ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)
2928adantll 713 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)
307, 29eqtrd 2793 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → ((coeff‘𝐹)‘𝑚) = 0)
3130ex 416 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → (¬ 𝑚𝑁 → ((coeff‘𝐹)‘𝑚) = 0))
3231necon1ad 2968 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁))
3332ralrimiva 3113 . . 3 (𝜑 → ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁))
34 eqid 2758 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
3534coef3 24933 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
361, 35syl 17 . . . 4 (𝜑 → (coeff‘𝐹):ℕ0⟶ℂ)
37 plyco0 24893 . . . 4 ((𝑁 ∈ ℕ0 ∧ (coeff‘𝐹):ℕ0⟶ℂ) → (((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁)))
382, 36, 37syl2anc 587 . . 3 (𝜑 → (((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁)))
3933, 38mpbird 260 . 2 (𝜑 → ((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0})
40 eqid 2758 . . 3 (deg‘𝐹) = (deg‘𝐹)
4134, 40dgrlb 24937 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0}) → (deg‘𝐹) ≤ 𝑁)
421, 2, 39, 41syl3anc 1368 1 (𝜑 → (deg‘𝐹) ≤ 𝑁)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  ifcif 4423  {csn 4525   class class class wbr 5035   ↦ cmpt 5115   I cid 5432   “ cima 5530  ⟶wf 6335  ‘cfv 6339  (class class class)co 7155  ℂcc 10578  0cc0 10580  1c1 10581   + caddc 10583   · cmul 10585   ≤ cle 10719  ℕ0cn0 11939  ℤ≥cuz 12287  ...cfz 12944  ↑cexp 13484  Σcsu 15095  Polycply 24885  coeffccoe 24887  degcdgr 24888 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-inf2 9142  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658  ax-addf 10659 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-pm 8424  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-inf 8945  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-n0 11940  df-z 12026  df-uz 12288  df-rp 12436  df-fz 12945  df-fzo 13088  df-fl 13216  df-seq 13424  df-exp 13485  df-hash 13746  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-clim 14898  df-rlim 14899  df-sum 15096  df-0p 24375  df-ply 24889  df-coe 24891  df-dgr 24892 This theorem is referenced by:  dgreq  24945  0dgr  24946  coeaddlem  24950  coemullem  24951  taylply2  25067
 Copyright terms: Public domain W3C validator