Step | Hyp | Ref
| Expression |
1 | | dgrle.1 |
. 2
β’ (π β πΉ β (Polyβπ)) |
2 | | dgrle.2 |
. 2
β’ (π β π β
β0) |
3 | | dgrle.3 |
. . . . . . . . . 10
β’ ((π β§ π β (0...π)) β π΄ β β) |
4 | | dgrle.4 |
. . . . . . . . . 10
β’ (π β πΉ = (π§ β β β¦ Ξ£π β (0...π)(π΄ Β· (π§βπ)))) |
5 | 1, 2, 3, 4 | coeeq2 25980 |
. . . . . . . . 9
β’ (π β (coeffβπΉ) = (π β β0 β¦ if(π β€ π, π΄, 0))) |
6 | 5 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ π β β0) β§ Β¬
π β€ π) β (coeffβπΉ) = (π β β0 β¦ if(π β€ π, π΄, 0))) |
7 | 6 | fveq1d 6893 |
. . . . . . 7
β’ (((π β§ π β β0) β§ Β¬
π β€ π) β ((coeffβπΉ)βπ) = ((π β β0 β¦ if(π β€ π, π΄, 0))βπ)) |
8 | | nfcv 2903 |
. . . . . . . . . 10
β’
β²ππ |
9 | | nfv 1917 |
. . . . . . . . . . 11
β’
β²π Β¬ π β€ π |
10 | | nffvmpt1 6902 |
. . . . . . . . . . . 12
β’
β²π((π β β0 β¦ if(π β€ π, π΄, 0))βπ) |
11 | 10 | nfeq1 2918 |
. . . . . . . . . . 11
β’
β²π((π β β0
β¦ if(π β€ π, π΄, 0))βπ) = 0 |
12 | 9, 11 | nfim 1899 |
. . . . . . . . . 10
β’
β²π(Β¬ π β€ π β ((π β β0 β¦ if(π β€ π, π΄, 0))βπ) = 0) |
13 | | breq1 5151 |
. . . . . . . . . . . 12
β’ (π = π β (π β€ π β π β€ π)) |
14 | 13 | notbid 317 |
. . . . . . . . . . 11
β’ (π = π β (Β¬ π β€ π β Β¬ π β€ π)) |
15 | | fveqeq2 6900 |
. . . . . . . . . . 11
β’ (π = π β (((π β β0 β¦ if(π β€ π, π΄, 0))βπ) = 0 β ((π β β0 β¦ if(π β€ π, π΄, 0))βπ) = 0)) |
16 | 14, 15 | imbi12d 344 |
. . . . . . . . . 10
β’ (π = π β ((Β¬ π β€ π β ((π β β0 β¦ if(π β€ π, π΄, 0))βπ) = 0) β (Β¬ π β€ π β ((π β β0 β¦ if(π β€ π, π΄, 0))βπ) = 0))) |
17 | | iffalse 4537 |
. . . . . . . . . . . . 13
β’ (Β¬
π β€ π β if(π β€ π, π΄, 0) = 0) |
18 | 17 | fveq2d 6895 |
. . . . . . . . . . . 12
β’ (Β¬
π β€ π β ( I βif(π β€ π, π΄, 0)) = ( I β0)) |
19 | | 0cn 11210 |
. . . . . . . . . . . . 13
β’ 0 β
β |
20 | | fvi 6967 |
. . . . . . . . . . . . 13
β’ (0 β
β β ( I β0) = 0) |
21 | 19, 20 | ax-mp 5 |
. . . . . . . . . . . 12
β’ ( I
β0) = 0 |
22 | 18, 21 | eqtrdi 2788 |
. . . . . . . . . . 11
β’ (Β¬
π β€ π β ( I βif(π β€ π, π΄, 0)) = 0) |
23 | | eqid 2732 |
. . . . . . . . . . . . 13
β’ (π β β0
β¦ if(π β€ π, π΄, 0)) = (π β β0 β¦ if(π β€ π, π΄, 0)) |
24 | 23 | fvmpt2i 7008 |
. . . . . . . . . . . 12
β’ (π β β0
β ((π β
β0 β¦ if(π β€ π, π΄, 0))βπ) = ( I βif(π β€ π, π΄, 0))) |
25 | 24 | eqeq1d 2734 |
. . . . . . . . . . 11
β’ (π β β0
β (((π β
β0 β¦ if(π β€ π, π΄, 0))βπ) = 0 β ( I βif(π β€ π, π΄, 0)) = 0)) |
26 | 22, 25 | imbitrrid 245 |
. . . . . . . . . 10
β’ (π β β0
β (Β¬ π β€ π β ((π β β0 β¦ if(π β€ π, π΄, 0))βπ) = 0)) |
27 | 8, 12, 16, 26 | vtoclgaf 3564 |
. . . . . . . . 9
β’ (π β β0
β (Β¬ π β€ π β ((π β β0 β¦ if(π β€ π, π΄, 0))βπ) = 0)) |
28 | 27 | imp 407 |
. . . . . . . 8
β’ ((π β β0
β§ Β¬ π β€ π) β ((π β β0 β¦ if(π β€ π, π΄, 0))βπ) = 0) |
29 | 28 | adantll 712 |
. . . . . . 7
β’ (((π β§ π β β0) β§ Β¬
π β€ π) β ((π β β0 β¦ if(π β€ π, π΄, 0))βπ) = 0) |
30 | 7, 29 | eqtrd 2772 |
. . . . . 6
β’ (((π β§ π β β0) β§ Β¬
π β€ π) β ((coeffβπΉ)βπ) = 0) |
31 | 30 | ex 413 |
. . . . 5
β’ ((π β§ π β β0) β (Β¬
π β€ π β ((coeffβπΉ)βπ) = 0)) |
32 | 31 | necon1ad 2957 |
. . . 4
β’ ((π β§ π β β0) β
(((coeffβπΉ)βπ) β 0 β π β€ π)) |
33 | 32 | ralrimiva 3146 |
. . 3
β’ (π β βπ β β0
(((coeffβπΉ)βπ) β 0 β π β€ π)) |
34 | | eqid 2732 |
. . . . . 6
β’
(coeffβπΉ) =
(coeffβπΉ) |
35 | 34 | coef3 25970 |
. . . . 5
β’ (πΉ β (Polyβπ) β (coeffβπΉ):β0βΆβ) |
36 | 1, 35 | syl 17 |
. . . 4
β’ (π β (coeffβπΉ):β0βΆβ) |
37 | | plyco0 25930 |
. . . 4
β’ ((π β β0
β§ (coeffβπΉ):β0βΆβ) β
(((coeffβπΉ) β
(β€β₯β(π + 1))) = {0} β βπ β β0
(((coeffβπΉ)βπ) β 0 β π β€ π))) |
38 | 2, 36, 37 | syl2anc 584 |
. . 3
β’ (π β (((coeffβπΉ) β
(β€β₯β(π + 1))) = {0} β βπ β β0
(((coeffβπΉ)βπ) β 0 β π β€ π))) |
39 | 33, 38 | mpbird 256 |
. 2
β’ (π β ((coeffβπΉ) β
(β€β₯β(π + 1))) = {0}) |
40 | | eqid 2732 |
. . 3
β’
(degβπΉ) =
(degβπΉ) |
41 | 34, 40 | dgrlb 25974 |
. 2
β’ ((πΉ β (Polyβπ) β§ π β β0 β§
((coeffβπΉ) β
(β€β₯β(π + 1))) = {0}) β (degβπΉ) β€ π) |
42 | 1, 2, 39, 41 | syl3anc 1371 |
1
β’ (π β (degβπΉ) β€ π) |