MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrle Structured version   Visualization version   GIF version

Theorem dgrle 25686
Description: Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrle.2 (𝜑𝑁 ∈ ℕ0)
dgrle.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
dgrle.4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
Assertion
Ref Expression
dgrle (𝜑 → (deg‘𝐹) ≤ 𝑁)
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem dgrle
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgrle.2 . 2 (𝜑𝑁 ∈ ℕ0)
3 dgrle.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
4 dgrle.4 . . . . . . . . . 10 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
51, 2, 3, 4coeeq2 25685 . . . . . . . . 9 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
65ad2antrr 724 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
76fveq1d 6880 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → ((coeff‘𝐹)‘𝑚) = ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚))
8 nfcv 2902 . . . . . . . . . 10 𝑘𝑚
9 nfv 1917 . . . . . . . . . . 11 𝑘 ¬ 𝑚𝑁
10 nffvmpt1 6889 . . . . . . . . . . . 12 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚)
1110nfeq1 2917 . . . . . . . . . . 11 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0
129, 11nfim 1899 . . . . . . . . . 10 𝑘𝑚𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)
13 breq1 5144 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑘𝑁𝑚𝑁))
1413notbid 317 . . . . . . . . . . 11 (𝑘 = 𝑚 → (¬ 𝑘𝑁 ↔ ¬ 𝑚𝑁))
15 fveqeq2 6887 . . . . . . . . . . 11 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0))
1614, 15imbi12d 344 . . . . . . . . . 10 (𝑘 = 𝑚 → ((¬ 𝑘𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0) ↔ (¬ 𝑚𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)))
17 iffalse 4531 . . . . . . . . . . . . 13 𝑘𝑁 → if(𝑘𝑁, 𝐴, 0) = 0)
1817fveq2d 6882 . . . . . . . . . . . 12 𝑘𝑁 → ( I ‘if(𝑘𝑁, 𝐴, 0)) = ( I ‘0))
19 0cn 11188 . . . . . . . . . . . . 13 0 ∈ ℂ
20 fvi 6953 . . . . . . . . . . . . 13 (0 ∈ ℂ → ( I ‘0) = 0)
2119, 20ax-mp 5 . . . . . . . . . . . 12 ( I ‘0) = 0
2218, 21eqtrdi 2787 . . . . . . . . . . 11 𝑘𝑁 → ( I ‘if(𝑘𝑁, 𝐴, 0)) = 0)
23 eqid 2731 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))
2423fvmpt2i 6994 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = ( I ‘if(𝑘𝑁, 𝐴, 0)))
2524eqeq1d 2733 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ( I ‘if(𝑘𝑁, 𝐴, 0)) = 0))
2622, 25imbitrrid 245 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (¬ 𝑘𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0))
278, 12, 16, 26vtoclgaf 3561 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (¬ 𝑚𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0))
2827imp 407 . . . . . . . 8 ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)
2928adantll 712 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)
307, 29eqtrd 2771 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → ((coeff‘𝐹)‘𝑚) = 0)
3130ex 413 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → (¬ 𝑚𝑁 → ((coeff‘𝐹)‘𝑚) = 0))
3231necon1ad 2956 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁))
3332ralrimiva 3145 . . 3 (𝜑 → ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁))
34 eqid 2731 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
3534coef3 25675 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
361, 35syl 17 . . . 4 (𝜑 → (coeff‘𝐹):ℕ0⟶ℂ)
37 plyco0 25635 . . . 4 ((𝑁 ∈ ℕ0 ∧ (coeff‘𝐹):ℕ0⟶ℂ) → (((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁)))
382, 36, 37syl2anc 584 . . 3 (𝜑 → (((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁)))
3933, 38mpbird 256 . 2 (𝜑 → ((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0})
40 eqid 2731 . . 3 (deg‘𝐹) = (deg‘𝐹)
4134, 40dgrlb 25679 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0}) → (deg‘𝐹) ≤ 𝑁)
421, 2, 39, 41syl3anc 1371 1 (𝜑 → (deg‘𝐹) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  wral 3060  ifcif 4522  {csn 4622   class class class wbr 5141  cmpt 5224   I cid 5566  cima 5672  wf 6528  cfv 6532  (class class class)co 7393  cc 11090  0cc0 11092  1c1 11093   + caddc 11095   · cmul 11097  cle 11231  0cn0 12454  cuz 12804  ...cfz 13466  cexp 14009  Σcsu 15614  Polycply 25627  coeffccoe 25629  degcdgr 25630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-pm 8806  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9419  df-inf 9420  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-n0 12455  df-z 12541  df-uz 12805  df-rp 12957  df-fz 13467  df-fzo 13610  df-fl 13739  df-seq 13949  df-exp 14010  df-hash 14273  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-clim 15414  df-rlim 15415  df-sum 15615  df-0p 25116  df-ply 25631  df-coe 25633  df-dgr 25634
This theorem is referenced by:  dgreq  25687  0dgr  25688  coeaddlem  25692  coemullem  25693  taylply2  25809
  Copyright terms: Public domain W3C validator