Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dgrle | Structured version Visualization version GIF version |
Description: Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
dgrle.1 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
dgrle.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
dgrle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
dgrle.4 | ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) |
Ref | Expression |
---|---|
dgrle | ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dgrle.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
2 | dgrle.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | dgrle.3 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) | |
4 | dgrle.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) | |
5 | 1, 2, 3, 4 | coeeq2 25308 | . . . . . . . . 9 ⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |
6 | 5 | ad2antrr 722 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |
7 | 6 | fveq1d 6758 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((coeff‘𝐹)‘𝑚) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚)) |
8 | nfcv 2906 | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝑚 | |
9 | nfv 1918 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 ¬ 𝑚 ≤ 𝑁 | |
10 | nffvmpt1 6767 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) | |
11 | 10 | nfeq1 2921 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0 |
12 | 9, 11 | nfim 1900 | . . . . . . . . . 10 ⊢ Ⅎ𝑘(¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
13 | breq1 5073 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑚 → (𝑘 ≤ 𝑁 ↔ 𝑚 ≤ 𝑁)) | |
14 | 13 | notbid 317 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (¬ 𝑘 ≤ 𝑁 ↔ ¬ 𝑚 ≤ 𝑁)) |
15 | fveqeq2 6765 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0)) | |
16 | 14, 15 | imbi12d 344 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑚 → ((¬ 𝑘 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0) ↔ (¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0))) |
17 | iffalse 4465 | . . . . . . . . . . . . 13 ⊢ (¬ 𝑘 ≤ 𝑁 → if(𝑘 ≤ 𝑁, 𝐴, 0) = 0) | |
18 | 17 | fveq2d 6760 | . . . . . . . . . . . 12 ⊢ (¬ 𝑘 ≤ 𝑁 → ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = ( I ‘0)) |
19 | 0cn 10898 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℂ | |
20 | fvi 6826 | . . . . . . . . . . . . 13 ⊢ (0 ∈ ℂ → ( I ‘0) = 0) | |
21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ( I ‘0) = 0 |
22 | 18, 21 | eqtrdi 2795 | . . . . . . . . . . 11 ⊢ (¬ 𝑘 ≤ 𝑁 → ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = 0) |
23 | eqid 2738 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) | |
24 | 23 | fvmpt2i 6867 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0))) |
25 | 24 | eqeq1d 2740 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = 0)) |
26 | 22, 25 | syl5ibr 245 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (¬ 𝑘 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0)) |
27 | 8, 12, 16, 26 | vtoclgaf 3502 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ0 → (¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0)) |
28 | 27 | imp 406 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ≤ 𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
29 | 28 | adantll 710 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
30 | 7, 29 | eqtrd 2778 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((coeff‘𝐹)‘𝑚) = 0) |
31 | 30 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (¬ 𝑚 ≤ 𝑁 → ((coeff‘𝐹)‘𝑚) = 0)) |
32 | 31 | necon1ad 2959 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
33 | 32 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
34 | eqid 2738 | . . . . . 6 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
35 | 34 | coef3 25298 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ) |
36 | 1, 35 | syl 17 | . . . 4 ⊢ (𝜑 → (coeff‘𝐹):ℕ0⟶ℂ) |
37 | plyco0 25258 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (coeff‘𝐹):ℕ0⟶ℂ) → (((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) | |
38 | 2, 36, 37 | syl2anc 583 | . . 3 ⊢ (𝜑 → (((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) |
39 | 33, 38 | mpbird 256 | . 2 ⊢ (𝜑 → ((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0}) |
40 | eqid 2738 | . . 3 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
41 | 34, 40 | dgrlb 25302 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0}) → (deg‘𝐹) ≤ 𝑁) |
42 | 1, 2, 39, 41 | syl3anc 1369 | 1 ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ifcif 4456 {csn 4558 class class class wbr 5070 ↦ cmpt 5153 I cid 5479 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ≤ cle 10941 ℕ0cn0 12163 ℤ≥cuz 12511 ...cfz 13168 ↑cexp 13710 Σcsu 15325 Polycply 25250 coeffccoe 25252 degcdgr 25253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-0p 24739 df-ply 25254 df-coe 25256 df-dgr 25257 |
This theorem is referenced by: dgreq 25310 0dgr 25311 coeaddlem 25315 coemullem 25316 taylply2 25432 |
Copyright terms: Public domain | W3C validator |