| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrle | Structured version Visualization version GIF version | ||
| Description: Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrle.1 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| dgrle.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| dgrle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
| dgrle.4 | ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) |
| Ref | Expression |
|---|---|
| dgrle | ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dgrle.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 2 | dgrle.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | dgrle.3 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) | |
| 4 | dgrle.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) | |
| 5 | 1, 2, 3, 4 | coeeq2 26282 | . . . . . . . . 9 ⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |
| 6 | 5 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |
| 7 | 6 | fveq1d 6907 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((coeff‘𝐹)‘𝑚) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚)) |
| 8 | nfcv 2904 | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝑚 | |
| 9 | nfv 1913 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 ¬ 𝑚 ≤ 𝑁 | |
| 10 | nffvmpt1 6916 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) | |
| 11 | 10 | nfeq1 2920 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0 |
| 12 | 9, 11 | nfim 1895 | . . . . . . . . . 10 ⊢ Ⅎ𝑘(¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
| 13 | breq1 5145 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑚 → (𝑘 ≤ 𝑁 ↔ 𝑚 ≤ 𝑁)) | |
| 14 | 13 | notbid 318 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (¬ 𝑘 ≤ 𝑁 ↔ ¬ 𝑚 ≤ 𝑁)) |
| 15 | fveqeq2 6914 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0)) | |
| 16 | 14, 15 | imbi12d 344 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑚 → ((¬ 𝑘 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0) ↔ (¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0))) |
| 17 | iffalse 4533 | . . . . . . . . . . . . 13 ⊢ (¬ 𝑘 ≤ 𝑁 → if(𝑘 ≤ 𝑁, 𝐴, 0) = 0) | |
| 18 | 17 | fveq2d 6909 | . . . . . . . . . . . 12 ⊢ (¬ 𝑘 ≤ 𝑁 → ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = ( I ‘0)) |
| 19 | 0cn 11254 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℂ | |
| 20 | fvi 6984 | . . . . . . . . . . . . 13 ⊢ (0 ∈ ℂ → ( I ‘0) = 0) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ( I ‘0) = 0 |
| 22 | 18, 21 | eqtrdi 2792 | . . . . . . . . . . 11 ⊢ (¬ 𝑘 ≤ 𝑁 → ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = 0) |
| 23 | eqid 2736 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) | |
| 24 | 23 | fvmpt2i 7025 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0))) |
| 25 | 24 | eqeq1d 2738 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = 0)) |
| 26 | 22, 25 | imbitrrid 246 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (¬ 𝑘 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0)) |
| 27 | 8, 12, 16, 26 | vtoclgaf 3575 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ0 → (¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0)) |
| 28 | 27 | imp 406 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ≤ 𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
| 29 | 28 | adantll 714 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
| 30 | 7, 29 | eqtrd 2776 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((coeff‘𝐹)‘𝑚) = 0) |
| 31 | 30 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (¬ 𝑚 ≤ 𝑁 → ((coeff‘𝐹)‘𝑚) = 0)) |
| 32 | 31 | necon1ad 2956 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
| 33 | 32 | ralrimiva 3145 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
| 34 | eqid 2736 | . . . . . 6 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 35 | 34 | coef3 26272 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ) |
| 36 | 1, 35 | syl 17 | . . . 4 ⊢ (𝜑 → (coeff‘𝐹):ℕ0⟶ℂ) |
| 37 | plyco0 26232 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (coeff‘𝐹):ℕ0⟶ℂ) → (((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) | |
| 38 | 2, 36, 37 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) |
| 39 | 33, 38 | mpbird 257 | . 2 ⊢ (𝜑 → ((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0}) |
| 40 | eqid 2736 | . . 3 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
| 41 | 34, 40 | dgrlb 26276 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0}) → (deg‘𝐹) ≤ 𝑁) |
| 42 | 1, 2, 39, 41 | syl3anc 1372 | 1 ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ifcif 4524 {csn 4625 class class class wbr 5142 ↦ cmpt 5224 I cid 5576 “ cima 5687 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 0cc0 11156 1c1 11157 + caddc 11159 · cmul 11161 ≤ cle 11297 ℕ0cn0 12528 ℤ≥cuz 12879 ...cfz 13548 ↑cexp 14103 Σcsu 15723 Polycply 26224 coeffccoe 26226 degcdgr 26227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fz 13549 df-fzo 13696 df-fl 13833 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-rlim 15526 df-sum 15724 df-0p 25706 df-ply 26228 df-coe 26230 df-dgr 26231 |
| This theorem is referenced by: dgreq 26284 0dgr 26285 coeaddlem 26289 coemullem 26290 taylply2 26410 taylply2OLD 26411 |
| Copyright terms: Public domain | W3C validator |