| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrle | Structured version Visualization version GIF version | ||
| Description: Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrle.1 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| dgrle.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| dgrle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
| dgrle.4 | ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) |
| Ref | Expression |
|---|---|
| dgrle | ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dgrle.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 2 | dgrle.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | dgrle.3 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) | |
| 4 | dgrle.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) | |
| 5 | 1, 2, 3, 4 | coeeq2 26172 | . . . . . . . . 9 ⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |
| 6 | 5 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |
| 7 | 6 | fveq1d 6824 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((coeff‘𝐹)‘𝑚) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚)) |
| 8 | nfcv 2894 | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝑚 | |
| 9 | nfv 1915 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 ¬ 𝑚 ≤ 𝑁 | |
| 10 | nffvmpt1 6833 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) | |
| 11 | 10 | nfeq1 2910 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0 |
| 12 | 9, 11 | nfim 1897 | . . . . . . . . . 10 ⊢ Ⅎ𝑘(¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
| 13 | breq1 5094 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑚 → (𝑘 ≤ 𝑁 ↔ 𝑚 ≤ 𝑁)) | |
| 14 | 13 | notbid 318 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (¬ 𝑘 ≤ 𝑁 ↔ ¬ 𝑚 ≤ 𝑁)) |
| 15 | fveqeq2 6831 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0)) | |
| 16 | 14, 15 | imbi12d 344 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑚 → ((¬ 𝑘 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0) ↔ (¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0))) |
| 17 | iffalse 4484 | . . . . . . . . . . . . 13 ⊢ (¬ 𝑘 ≤ 𝑁 → if(𝑘 ≤ 𝑁, 𝐴, 0) = 0) | |
| 18 | 17 | fveq2d 6826 | . . . . . . . . . . . 12 ⊢ (¬ 𝑘 ≤ 𝑁 → ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = ( I ‘0)) |
| 19 | 0cn 11101 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℂ | |
| 20 | fvi 6898 | . . . . . . . . . . . . 13 ⊢ (0 ∈ ℂ → ( I ‘0) = 0) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ( I ‘0) = 0 |
| 22 | 18, 21 | eqtrdi 2782 | . . . . . . . . . . 11 ⊢ (¬ 𝑘 ≤ 𝑁 → ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = 0) |
| 23 | eqid 2731 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) | |
| 24 | 23 | fvmpt2i 6939 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0))) |
| 25 | 24 | eqeq1d 2733 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = 0)) |
| 26 | 22, 25 | imbitrrid 246 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (¬ 𝑘 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0)) |
| 27 | 8, 12, 16, 26 | vtoclgaf 3531 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ0 → (¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0)) |
| 28 | 27 | imp 406 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ≤ 𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
| 29 | 28 | adantll 714 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
| 30 | 7, 29 | eqtrd 2766 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((coeff‘𝐹)‘𝑚) = 0) |
| 31 | 30 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (¬ 𝑚 ≤ 𝑁 → ((coeff‘𝐹)‘𝑚) = 0)) |
| 32 | 31 | necon1ad 2945 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
| 33 | 32 | ralrimiva 3124 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
| 34 | eqid 2731 | . . . . . 6 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 35 | 34 | coef3 26162 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ) |
| 36 | 1, 35 | syl 17 | . . . 4 ⊢ (𝜑 → (coeff‘𝐹):ℕ0⟶ℂ) |
| 37 | plyco0 26122 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (coeff‘𝐹):ℕ0⟶ℂ) → (((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) | |
| 38 | 2, 36, 37 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) |
| 39 | 33, 38 | mpbird 257 | . 2 ⊢ (𝜑 → ((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0}) |
| 40 | eqid 2731 | . . 3 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
| 41 | 34, 40 | dgrlb 26166 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0}) → (deg‘𝐹) ≤ 𝑁) |
| 42 | 1, 2, 39, 41 | syl3anc 1373 | 1 ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ifcif 4475 {csn 4576 class class class wbr 5091 ↦ cmpt 5172 I cid 5510 “ cima 5619 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 ≤ cle 11144 ℕ0cn0 12378 ℤ≥cuz 12729 ...cfz 13404 ↑cexp 13965 Σcsu 15590 Polycply 26114 coeffccoe 26116 degcdgr 26117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-rlim 15393 df-sum 15591 df-0p 25596 df-ply 26118 df-coe 26120 df-dgr 26121 |
| This theorem is referenced by: dgreq 26174 0dgr 26175 coeaddlem 26179 coemullem 26180 taylply2 26300 taylply2OLD 26301 |
| Copyright terms: Public domain | W3C validator |