| Step | Hyp | Ref
| Expression |
| 1 | | prodeq1 15926 |
. . . . 5
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵) |
| 2 | | prod0 15962 |
. . . . 5
⊢
∏𝑘 ∈
∅ 𝐵 =
1 |
| 3 | 1, 2 | eqtrdi 2785 |
. . . 4
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = 1) |
| 4 | | ax-1ne0 11207 |
. . . . 5
⊢ 1 ≠
0 |
| 5 | 4 | a1i 11 |
. . . 4
⊢ (𝐴 = ∅ → 1 ≠
0) |
| 6 | 3, 5 | eqnetrd 2998 |
. . 3
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0) |
| 7 | 6 | a1i 11 |
. 2
⊢ (𝜑 → (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0)) |
| 8 | | prodfc 15964 |
. . . . . . 7
⊢
∏𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐵 |
| 9 | | fveq2 6887 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
| 10 | | simprl 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) |
| 11 | | simprr 772 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
| 12 | | fprodn0.2 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 13 | 12 | fmpttd 7116 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 15 | 14 | ffvelcdmda 7085 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
| 16 | | f1of 6829 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
| 17 | 11, 16 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
| 18 | | fvco3 6989 |
. . . . . . . . 9
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
| 19 | 17, 18 | sylan 580 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
| 20 | 9, 10, 11, 15, 19 | fprod 15960 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴))) |
| 21 | 8, 20 | eqtr3id 2783 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑘 ∈ 𝐴 𝐵 = (seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴))) |
| 22 | | nnuz 12904 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 23 | 10, 22 | eleqtrdi 2843 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
(ℤ≥‘1)) |
| 24 | | fco 6741 |
. . . . . . . . 9
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
| 25 | 14, 17, 24 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
| 26 | 25 | ffvelcdmda 7085 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑚) ∈ ℂ) |
| 27 | | fvco3 6989 |
. . . . . . . . 9
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑚))) |
| 28 | 17, 27 | sylan 580 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑚))) |
| 29 | 16 | ffvelcdmda 7085 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (𝑓‘𝑚) ∈ 𝐴) |
| 30 | 29 | adantll 714 |
. . . . . . . . . 10
⊢
((((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (𝑓‘𝑚) ∈ 𝐴) |
| 31 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓‘𝑚) ∈ 𝐴) → (𝑓‘𝑚) ∈ 𝐴) |
| 32 | | nfcv 2897 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝑓‘𝑚) |
| 33 | | nfv 1913 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝜑 |
| 34 | | nfcsb1v 3905 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋(𝑓‘𝑚) / 𝑘⦌𝐵 |
| 35 | 34 | nfel1 2914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ |
| 36 | 33, 35 | nfim 1895 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝜑 → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) |
| 37 | | csbeq1a 3895 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑓‘𝑚) → 𝐵 = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) |
| 38 | 37 | eleq1d 2818 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑓‘𝑚) → (𝐵 ∈ ℂ ↔ ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
| 39 | 38 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑓‘𝑚) → ((𝜑 → 𝐵 ∈ ℂ) ↔ (𝜑 → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ))) |
| 40 | 12 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝐴 → (𝜑 → 𝐵 ∈ ℂ)) |
| 41 | 32, 36, 39, 40 | vtoclgaf 3560 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑚) ∈ 𝐴 → (𝜑 → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
| 42 | 41 | impcom 407 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓‘𝑚) ∈ 𝐴) → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) |
| 43 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
| 44 | 43 | fvmpts 7000 |
. . . . . . . . . . . 12
⊢ (((𝑓‘𝑚) ∈ 𝐴 ∧ ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑚)) = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) |
| 45 | 31, 42, 44 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓‘𝑚) ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑚)) = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) |
| 46 | | nfcv 2897 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘0 |
| 47 | 34, 46 | nfne 3032 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ≠ 0 |
| 48 | 33, 47 | nfim 1895 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(𝜑 → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ≠ 0) |
| 49 | 37 | neeq1d 2990 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑓‘𝑚) → (𝐵 ≠ 0 ↔ ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ≠ 0)) |
| 50 | 49 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑚) → ((𝜑 → 𝐵 ≠ 0) ↔ (𝜑 → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ≠ 0))) |
| 51 | | fprodn0.3 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≠ 0) |
| 52 | 51 | expcom 413 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝐴 → (𝜑 → 𝐵 ≠ 0)) |
| 53 | 32, 48, 50, 52 | vtoclgaf 3560 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑚) ∈ 𝐴 → (𝜑 → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ≠ 0)) |
| 54 | 53 | impcom 407 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓‘𝑚) ∈ 𝐴) → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ≠ 0) |
| 55 | 45, 54 | eqnetrd 2998 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓‘𝑚) ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑚)) ≠ 0) |
| 56 | 30, 55 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ 𝑚 ∈ (1...(♯‘𝐴)))) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑚)) ≠ 0) |
| 57 | 56 | anassrs 467 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑚)) ≠ 0) |
| 58 | 28, 57 | eqnetrd 2998 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑚) ≠ 0) |
| 59 | 23, 26, 58 | prodfn0 15913 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (seq1( · ,
((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴)) ≠ 0) |
| 60 | 21, 59 | eqnetrd 2998 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0) |
| 61 | 60 | expr 456 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0)) |
| 62 | 61 | exlimdv 1932 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0)) |
| 63 | 62 | expimpd 453 |
. 2
⊢ (𝜑 → (((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0)) |
| 64 | | fprodn0.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 65 | | fz1f1o 15729 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 66 | 64, 65 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 67 | 7, 63, 66 | mpjaod 860 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0) |