MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodn0 Structured version   Visualization version   GIF version

Theorem fprodn0 15112
Description: A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodn0.1 (𝜑𝐴 ∈ Fin)
fprodn0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodn0.3 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
fprodn0 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodn0
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15042 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 prod0 15076 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
31, 2syl6eq 2830 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
4 ax-1ne0 10341 . . . . 5 1 ≠ 0
54a1i 11 . . . 4 (𝐴 = ∅ → 1 ≠ 0)
63, 5eqnetrd 3036 . . 3 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 ≠ 0)
76a1i 11 . 2 (𝜑 → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 ≠ 0))
8 prodfc 15078 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵
9 fveq2 6446 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
10 simprl 761 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
11 simprr 763 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
12 fprodn0.2 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1312fmpttd 6649 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
1413adantr 474 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
1514ffvelrnda 6623 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
16 f1of 6391 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
1711, 16syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
18 fvco3 6535 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
1917, 18sylan 575 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
209, 10, 11, 15, 19fprod 15074 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
218, 20syl5eqr 2828 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
22 nnuz 12029 . . . . . . . 8 ℕ = (ℤ‘1)
2310, 22syl6eleq 2869 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
24 fco 6308 . . . . . . . . 9 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2514, 17, 24syl2anc 579 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2625ffvelrnda 6623 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) ∈ ℂ)
27 fvco3 6535 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑚)))
2817, 27sylan 575 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑚)))
2916ffvelrnda 6623 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑚 ∈ (1...(♯‘𝐴))) → (𝑓𝑚) ∈ 𝐴)
3029adantll 704 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (𝑓𝑚) ∈ 𝐴)
31 simpr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) ∈ 𝐴)
32 nfcv 2934 . . . . . . . . . . . . . 14 𝑘(𝑓𝑚)
33 nfv 1957 . . . . . . . . . . . . . . 15 𝑘𝜑
34 nfcsb1v 3767 . . . . . . . . . . . . . . . 16 𝑘(𝑓𝑚) / 𝑘𝐵
3534nfel1 2948 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑚) / 𝑘𝐵 ∈ ℂ
3633, 35nfim 1943 . . . . . . . . . . . . . 14 𝑘(𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
37 csbeq1a 3760 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑚) → 𝐵 = (𝑓𝑚) / 𝑘𝐵)
3837eleq1d 2844 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑚) → (𝐵 ∈ ℂ ↔ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
3938imbi2d 332 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑚) → ((𝜑𝐵 ∈ ℂ) ↔ (𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ)))
4012expcom 404 . . . . . . . . . . . . . 14 (𝑘𝐴 → (𝜑𝐵 ∈ ℂ))
4132, 36, 39, 40vtoclgaf 3473 . . . . . . . . . . . . 13 ((𝑓𝑚) ∈ 𝐴 → (𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
4241impcom 398 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
43 eqid 2778 . . . . . . . . . . . . 13 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
4443fvmpts 6545 . . . . . . . . . . . 12 (((𝑓𝑚) ∈ 𝐴(𝑓𝑚) / 𝑘𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) = (𝑓𝑚) / 𝑘𝐵)
4531, 42, 44syl2anc 579 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) = (𝑓𝑚) / 𝑘𝐵)
46 nfcv 2934 . . . . . . . . . . . . . . 15 𝑘0
4734, 46nfne 3072 . . . . . . . . . . . . . 14 𝑘(𝑓𝑚) / 𝑘𝐵 ≠ 0
4833, 47nfim 1943 . . . . . . . . . . . . 13 𝑘(𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0)
4937neeq1d 3028 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑚) → (𝐵 ≠ 0 ↔ (𝑓𝑚) / 𝑘𝐵 ≠ 0))
5049imbi2d 332 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑚) → ((𝜑𝐵 ≠ 0) ↔ (𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0)))
51 fprodn0.3 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
5251expcom 404 . . . . . . . . . . . . 13 (𝑘𝐴 → (𝜑𝐵 ≠ 0))
5332, 48, 50, 52vtoclgaf 3473 . . . . . . . . . . . 12 ((𝑓𝑚) ∈ 𝐴 → (𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0))
5453impcom 398 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) / 𝑘𝐵 ≠ 0)
5545, 54eqnetrd 3036 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5630, 55sylan2 586 . . . . . . . . 9 ((𝜑 ∧ (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑚 ∈ (1...(♯‘𝐴)))) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5756anassrs 461 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5828, 57eqnetrd 3036 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) ≠ 0)
5923, 26, 58prodfn0 15029 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) ≠ 0)
6021, 59eqnetrd 3036 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 ≠ 0)
6160expr 450 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 ≠ 0))
6261exlimdv 1976 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 ≠ 0))
6362expimpd 447 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 𝐵 ≠ 0))
64 fprodn0.1 . . 3 (𝜑𝐴 ∈ Fin)
65 fz1f1o 14848 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
6664, 65syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
677, 63, 66mpjaod 849 1 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 836   = wceq 1601  wex 1823  wcel 2107  wne 2969  csb 3751  c0 4141  cmpt 4965  ccom 5359  wf 6131  1-1-ontowf1o 6134  cfv 6135  (class class class)co 6922  Fincfn 8241  cc 10270  0cc0 10272  1c1 10273   · cmul 10277  cn 11374  cuz 11992  ...cfz 12643  seqcseq 13119  chash 13435  cprod 15038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-prod 15039
This theorem is referenced by:  fallfacval4  15176  absprodnn  15737  bcc0  39495  mccllem  40737  dvnprodlem2  41090  etransclem15  41393  etransclem25  41403  etransclem31  41409  etransclem32  41410  etransclem33  41411  etransclem34  41412
  Copyright terms: Public domain W3C validator