MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodn0 Structured version   Visualization version   GIF version

Theorem fprodn0 16000
Description: A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodn0.1 (𝜑𝐴 ∈ Fin)
fprodn0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodn0.3 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
fprodn0 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodn0
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15928 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 prod0 15964 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
31, 2eqtrdi 2787 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
4 ax-1ne0 11203 . . . . 5 1 ≠ 0
54a1i 11 . . . 4 (𝐴 = ∅ → 1 ≠ 0)
63, 5eqnetrd 3000 . . 3 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 ≠ 0)
76a1i 11 . 2 (𝜑 → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 ≠ 0))
8 prodfc 15966 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵
9 fveq2 6881 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
10 simprl 770 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
11 simprr 772 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
12 fprodn0.2 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1312fmpttd 7110 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
1413adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
1514ffvelcdmda 7079 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
16 f1of 6823 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
1711, 16syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
18 fvco3 6983 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
1917, 18sylan 580 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
209, 10, 11, 15, 19fprod 15962 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
218, 20eqtr3id 2785 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
22 nnuz 12900 . . . . . . . 8 ℕ = (ℤ‘1)
2310, 22eleqtrdi 2845 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
24 fco 6735 . . . . . . . . 9 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2514, 17, 24syl2anc 584 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2625ffvelcdmda 7079 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) ∈ ℂ)
27 fvco3 6983 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑚)))
2817, 27sylan 580 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑚)))
2916ffvelcdmda 7079 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑚 ∈ (1...(♯‘𝐴))) → (𝑓𝑚) ∈ 𝐴)
3029adantll 714 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (𝑓𝑚) ∈ 𝐴)
31 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) ∈ 𝐴)
32 nfcv 2899 . . . . . . . . . . . . . 14 𝑘(𝑓𝑚)
33 nfv 1914 . . . . . . . . . . . . . . 15 𝑘𝜑
34 nfcsb1v 3903 . . . . . . . . . . . . . . . 16 𝑘(𝑓𝑚) / 𝑘𝐵
3534nfel1 2916 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑚) / 𝑘𝐵 ∈ ℂ
3633, 35nfim 1896 . . . . . . . . . . . . . 14 𝑘(𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
37 csbeq1a 3893 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑚) → 𝐵 = (𝑓𝑚) / 𝑘𝐵)
3837eleq1d 2820 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑚) → (𝐵 ∈ ℂ ↔ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
3938imbi2d 340 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑚) → ((𝜑𝐵 ∈ ℂ) ↔ (𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ)))
4012expcom 413 . . . . . . . . . . . . . 14 (𝑘𝐴 → (𝜑𝐵 ∈ ℂ))
4132, 36, 39, 40vtoclgaf 3560 . . . . . . . . . . . . 13 ((𝑓𝑚) ∈ 𝐴 → (𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
4241impcom 407 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
43 eqid 2736 . . . . . . . . . . . . 13 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
4443fvmpts 6994 . . . . . . . . . . . 12 (((𝑓𝑚) ∈ 𝐴(𝑓𝑚) / 𝑘𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) = (𝑓𝑚) / 𝑘𝐵)
4531, 42, 44syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) = (𝑓𝑚) / 𝑘𝐵)
46 nfcv 2899 . . . . . . . . . . . . . . 15 𝑘0
4734, 46nfne 3034 . . . . . . . . . . . . . 14 𝑘(𝑓𝑚) / 𝑘𝐵 ≠ 0
4833, 47nfim 1896 . . . . . . . . . . . . 13 𝑘(𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0)
4937neeq1d 2992 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑚) → (𝐵 ≠ 0 ↔ (𝑓𝑚) / 𝑘𝐵 ≠ 0))
5049imbi2d 340 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑚) → ((𝜑𝐵 ≠ 0) ↔ (𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0)))
51 fprodn0.3 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
5251expcom 413 . . . . . . . . . . . . 13 (𝑘𝐴 → (𝜑𝐵 ≠ 0))
5332, 48, 50, 52vtoclgaf 3560 . . . . . . . . . . . 12 ((𝑓𝑚) ∈ 𝐴 → (𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0))
5453impcom 407 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) / 𝑘𝐵 ≠ 0)
5545, 54eqnetrd 3000 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5630, 55sylan2 593 . . . . . . . . 9 ((𝜑 ∧ (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑚 ∈ (1...(♯‘𝐴)))) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5756anassrs 467 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5828, 57eqnetrd 3000 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) ≠ 0)
5923, 26, 58prodfn0 15915 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) ≠ 0)
6021, 59eqnetrd 3000 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 ≠ 0)
6160expr 456 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 ≠ 0))
6261exlimdv 1933 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 ≠ 0))
6362expimpd 453 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 𝐵 ≠ 0))
64 fprodn0.1 . . 3 (𝜑𝐴 ∈ Fin)
65 fz1f1o 15731 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
6664, 65syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
677, 63, 66mpjaod 860 1 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2933  csb 3879  c0 4313  cmpt 5206  ccom 5663  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  0cc0 11134  1c1 11135   · cmul 11139  cn 12245  cuz 12857  ...cfz 13529  seqcseq 14024  chash 14353  cprod 15924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-prod 15925
This theorem is referenced by:  fallfacval4  16064  absprodnn  16642  bcc0  44339  mccllem  45606  dvnprodlem2  45956  etransclem15  46258  etransclem25  46268  etransclem31  46274  etransclem32  46275  etransclem33  46276  etransclem34  46277
  Copyright terms: Public domain W3C validator