MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodn0 Structured version   Visualization version   GIF version

Theorem fprodn0 15904
Description: A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodn0.1 (𝜑𝐴 ∈ Fin)
fprodn0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodn0.3 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
fprodn0 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodn0
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15832 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 prod0 15868 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
31, 2eqtrdi 2780 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
4 ax-1ne0 11097 . . . . 5 1 ≠ 0
54a1i 11 . . . 4 (𝐴 = ∅ → 1 ≠ 0)
63, 5eqnetrd 2992 . . 3 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 ≠ 0)
76a1i 11 . 2 (𝜑 → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 ≠ 0))
8 prodfc 15870 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵
9 fveq2 6826 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
10 simprl 770 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
11 simprr 772 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
12 fprodn0.2 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1312fmpttd 7053 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
1413adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
1514ffvelcdmda 7022 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
16 f1of 6768 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
1711, 16syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
18 fvco3 6926 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
1917, 18sylan 580 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
209, 10, 11, 15, 19fprod 15866 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
218, 20eqtr3id 2778 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
22 nnuz 12796 . . . . . . . 8 ℕ = (ℤ‘1)
2310, 22eleqtrdi 2838 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
24 fco 6680 . . . . . . . . 9 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2514, 17, 24syl2anc 584 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2625ffvelcdmda 7022 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) ∈ ℂ)
27 fvco3 6926 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑚)))
2817, 27sylan 580 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑚)))
2916ffvelcdmda 7022 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑚 ∈ (1...(♯‘𝐴))) → (𝑓𝑚) ∈ 𝐴)
3029adantll 714 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (𝑓𝑚) ∈ 𝐴)
31 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) ∈ 𝐴)
32 nfcv 2891 . . . . . . . . . . . . . 14 𝑘(𝑓𝑚)
33 nfv 1914 . . . . . . . . . . . . . . 15 𝑘𝜑
34 nfcsb1v 3877 . . . . . . . . . . . . . . . 16 𝑘(𝑓𝑚) / 𝑘𝐵
3534nfel1 2908 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑚) / 𝑘𝐵 ∈ ℂ
3633, 35nfim 1896 . . . . . . . . . . . . . 14 𝑘(𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
37 csbeq1a 3867 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑚) → 𝐵 = (𝑓𝑚) / 𝑘𝐵)
3837eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑚) → (𝐵 ∈ ℂ ↔ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
3938imbi2d 340 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑚) → ((𝜑𝐵 ∈ ℂ) ↔ (𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ)))
4012expcom 413 . . . . . . . . . . . . . 14 (𝑘𝐴 → (𝜑𝐵 ∈ ℂ))
4132, 36, 39, 40vtoclgaf 3533 . . . . . . . . . . . . 13 ((𝑓𝑚) ∈ 𝐴 → (𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
4241impcom 407 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
43 eqid 2729 . . . . . . . . . . . . 13 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
4443fvmpts 6937 . . . . . . . . . . . 12 (((𝑓𝑚) ∈ 𝐴(𝑓𝑚) / 𝑘𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) = (𝑓𝑚) / 𝑘𝐵)
4531, 42, 44syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) = (𝑓𝑚) / 𝑘𝐵)
46 nfcv 2891 . . . . . . . . . . . . . . 15 𝑘0
4734, 46nfne 3026 . . . . . . . . . . . . . 14 𝑘(𝑓𝑚) / 𝑘𝐵 ≠ 0
4833, 47nfim 1896 . . . . . . . . . . . . 13 𝑘(𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0)
4937neeq1d 2984 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑚) → (𝐵 ≠ 0 ↔ (𝑓𝑚) / 𝑘𝐵 ≠ 0))
5049imbi2d 340 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑚) → ((𝜑𝐵 ≠ 0) ↔ (𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0)))
51 fprodn0.3 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
5251expcom 413 . . . . . . . . . . . . 13 (𝑘𝐴 → (𝜑𝐵 ≠ 0))
5332, 48, 50, 52vtoclgaf 3533 . . . . . . . . . . . 12 ((𝑓𝑚) ∈ 𝐴 → (𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0))
5453impcom 407 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) / 𝑘𝐵 ≠ 0)
5545, 54eqnetrd 2992 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5630, 55sylan2 593 . . . . . . . . 9 ((𝜑 ∧ (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑚 ∈ (1...(♯‘𝐴)))) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5756anassrs 467 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5828, 57eqnetrd 2992 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) ≠ 0)
5923, 26, 58prodfn0 15819 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) ≠ 0)
6021, 59eqnetrd 2992 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 ≠ 0)
6160expr 456 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 ≠ 0))
6261exlimdv 1933 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 ≠ 0))
6362expimpd 453 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 𝐵 ≠ 0))
64 fprodn0.1 . . 3 (𝜑𝐴 ∈ Fin)
65 fz1f1o 15635 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
6664, 65syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
677, 63, 66mpjaod 860 1 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  csb 3853  c0 4286  cmpt 5176  ccom 5627  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  0cc0 11028  1c1 11029   · cmul 11033  cn 12146  cuz 12753  ...cfz 13428  seqcseq 13926  chash 14255  cprod 15828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-prod 15829
This theorem is referenced by:  fallfacval4  15968  absprodnn  16547  bcc0  44313  mccllem  45579  dvnprodlem2  45929  etransclem15  46231  etransclem25  46241  etransclem31  46247  etransclem32  46248  etransclem33  46249  etransclem34  46250
  Copyright terms: Public domain W3C validator