| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptf | Structured version Visualization version GIF version | ||
| Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 6966 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
| fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptf | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | fvmptf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 2 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥 𝐶 ∈ V |
| 4 | fvmptf.4 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 5 | nfmpt1 5206 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 6 | 4, 5 | nfcxfr 2889 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
| 7 | 6, 1 | nffv 6868 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| 8 | 7, 2 | nfeq 2905 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐴) = 𝐶 |
| 9 | 3, 8 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝐶 ∈ V → (𝐹‘𝐴) = 𝐶) |
| 10 | fvmptf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 11 | 10 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
| 12 | fveq2 6858 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 13 | 12, 10 | eqeq12d 2745 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝐴) = 𝐶)) |
| 14 | 11, 13 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹‘𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶))) |
| 15 | 4 | fvmpt2 6979 | . . . 4 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
| 16 | 15 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝐷 → (𝐵 ∈ V → (𝐹‘𝑥) = 𝐵)) |
| 17 | 1, 9, 14, 16 | vtoclgaf 3542 | . 2 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶)) |
| 18 | elex 3468 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
| 19 | 17, 18 | impel 505 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3447 ↦ cmpt 5188 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: fvmptnf 6990 elfvmptrab1w 6995 elfvmptrab1 6996 elovmpt3rab1 7649 rdgsucmptf 8396 frsucmpt 8406 fprodntriv 15908 prodss 15913 fprodefsum 16061 dvfsumabs 25929 dvfsumlem1 25932 dvfsumlem4 25936 dvfsum2 25941 dchrisumlem2 27401 dchrisumlem3 27402 rmfsupp2 33189 ptrest 37613 hlhilset 41928 orbitclmpt 44948 fsumsermpt 45577 mulc1cncfg 45587 expcnfg 45589 climsubmpt 45658 climeldmeqmpt 45666 climfveqmpt 45669 fnlimfvre 45672 climfveqmpt3 45680 climeldmeqmpt3 45687 climinf2mpt 45712 climinfmpt 45713 stoweidlem23 46021 stoweidlem34 46032 stoweidlem36 46034 wallispilem5 46067 stirlinglem4 46075 stirlinglem11 46082 stirlinglem12 46083 stirlinglem13 46084 stirlinglem14 46085 sge0lempt 46408 sge0isummpt2 46430 meadjiun 46464 hoimbl2 46663 vonhoire 46670 |
| Copyright terms: Public domain | W3C validator |