| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptf | Structured version Visualization version GIF version | ||
| Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 6932 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
| fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptf | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | fvmptf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 2 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥 𝐶 ∈ V |
| 4 | fvmptf.4 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 5 | nfmpt1 5194 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 6 | 4, 5 | nfcxfr 2889 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
| 7 | 6, 1 | nffv 6836 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| 8 | 7, 2 | nfeq 2905 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐴) = 𝐶 |
| 9 | 3, 8 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝐶 ∈ V → (𝐹‘𝐴) = 𝐶) |
| 10 | fvmptf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 11 | 10 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
| 12 | fveq2 6826 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 13 | 12, 10 | eqeq12d 2745 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝐴) = 𝐶)) |
| 14 | 11, 13 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹‘𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶))) |
| 15 | 4 | fvmpt2 6945 | . . . 4 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
| 16 | 15 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝐷 → (𝐵 ∈ V → (𝐹‘𝑥) = 𝐵)) |
| 17 | 1, 9, 14, 16 | vtoclgaf 3533 | . 2 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶)) |
| 18 | elex 3459 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
| 19 | 17, 18 | impel 505 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3438 ↦ cmpt 5176 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: fvmptnf 6956 elfvmptrab1w 6961 elfvmptrab1 6962 elovmpt3rab1 7613 rdgsucmptf 8357 frsucmpt 8367 fprodntriv 15867 prodss 15872 fprodefsum 16020 dvfsumabs 25945 dvfsumlem1 25948 dvfsumlem4 25952 dvfsum2 25957 dchrisumlem2 27417 dchrisumlem3 27418 rmfsupp2 33188 ptrest 37598 hlhilset 41913 orbitclmpt 44932 fsumsermpt 45561 mulc1cncfg 45571 expcnfg 45573 climsubmpt 45642 climeldmeqmpt 45650 climfveqmpt 45653 fnlimfvre 45656 climfveqmpt3 45664 climeldmeqmpt3 45671 climinf2mpt 45696 climinfmpt 45697 stoweidlem23 46005 stoweidlem34 46016 stoweidlem36 46018 wallispilem5 46051 stirlinglem4 46059 stirlinglem11 46066 stirlinglem12 46067 stirlinglem13 46068 stirlinglem14 46069 sge0lempt 46392 sge0isummpt2 46414 meadjiun 46448 hoimbl2 46647 vonhoire 46654 |
| Copyright terms: Public domain | W3C validator |