| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptf | Structured version Visualization version GIF version | ||
| Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 6969 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
| fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptf | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | fvmptf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 2 | nfel1 2909 | . . . 4 ⊢ Ⅎ𝑥 𝐶 ∈ V |
| 4 | fvmptf.4 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 5 | nfmpt1 5209 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 6 | 4, 5 | nfcxfr 2890 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
| 7 | 6, 1 | nffv 6871 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| 8 | 7, 2 | nfeq 2906 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐴) = 𝐶 |
| 9 | 3, 8 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝐶 ∈ V → (𝐹‘𝐴) = 𝐶) |
| 10 | fvmptf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 11 | 10 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
| 12 | fveq2 6861 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 13 | 12, 10 | eqeq12d 2746 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝐴) = 𝐶)) |
| 14 | 11, 13 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹‘𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶))) |
| 15 | 4 | fvmpt2 6982 | . . . 4 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
| 16 | 15 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝐷 → (𝐵 ∈ V → (𝐹‘𝑥) = 𝐵)) |
| 17 | 1, 9, 14, 16 | vtoclgaf 3545 | . 2 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶)) |
| 18 | elex 3471 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
| 19 | 17, 18 | impel 505 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2877 Vcvv 3450 ↦ cmpt 5191 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: fvmptnf 6993 elfvmptrab1w 6998 elfvmptrab1 6999 elovmpt3rab1 7652 rdgsucmptf 8399 frsucmpt 8409 fprodntriv 15915 prodss 15920 fprodefsum 16068 dvfsumabs 25936 dvfsumlem1 25939 dvfsumlem4 25943 dvfsum2 25948 dchrisumlem2 27408 dchrisumlem3 27409 rmfsupp2 33196 ptrest 37620 hlhilset 41935 orbitclmpt 44955 fsumsermpt 45584 mulc1cncfg 45594 expcnfg 45596 climsubmpt 45665 climeldmeqmpt 45673 climfveqmpt 45676 fnlimfvre 45679 climfveqmpt3 45687 climeldmeqmpt3 45694 climinf2mpt 45719 climinfmpt 45720 stoweidlem23 46028 stoweidlem34 46039 stoweidlem36 46041 wallispilem5 46074 stirlinglem4 46082 stirlinglem11 46089 stirlinglem12 46090 stirlinglem13 46091 stirlinglem14 46092 sge0lempt 46415 sge0isummpt2 46437 meadjiun 46471 hoimbl2 46670 vonhoire 46677 |
| Copyright terms: Public domain | W3C validator |