![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptf | Structured version Visualization version GIF version |
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 7027 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptf | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | fvmptf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
3 | 2 | nfel1 2925 | . . . 4 ⊢ Ⅎ𝑥 𝐶 ∈ V |
4 | fvmptf.4 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
5 | nfmpt1 5274 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
6 | 4, 5 | nfcxfr 2906 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
7 | 6, 1 | nffv 6930 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
8 | 7, 2 | nfeq 2922 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐴) = 𝐶 |
9 | 3, 8 | nfim 1895 | . . 3 ⊢ Ⅎ𝑥(𝐶 ∈ V → (𝐹‘𝐴) = 𝐶) |
10 | fvmptf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
11 | 10 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
12 | fveq2 6920 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
13 | 12, 10 | eqeq12d 2756 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝐴) = 𝐶)) |
14 | 11, 13 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹‘𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶))) |
15 | 4 | fvmpt2 7040 | . . . 4 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
16 | 15 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝐷 → (𝐵 ∈ V → (𝐹‘𝑥) = 𝐵)) |
17 | 1, 9, 14, 16 | vtoclgaf 3588 | . 2 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶)) |
18 | elex 3509 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
19 | 17, 18 | impel 505 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: fvmptnf 7051 elfvmptrab1w 7056 elfvmptrab1 7057 elovmpt3rab1 7710 rdgsucmptf 8484 frsucmpt 8494 fprodntriv 15990 prodss 15995 fprodefsum 16143 dvfsumabs 26083 dvfsumlem1 26086 dvfsumlem4 26090 dvfsum2 26095 dchrisumlem2 27552 dchrisumlem3 27553 rmfsupp2 33218 ptrest 37579 hlhilset 41891 fsumsermpt 45500 mulc1cncfg 45510 expcnfg 45512 climsubmpt 45581 climeldmeqmpt 45589 climfveqmpt 45592 fnlimfvre 45595 climfveqmpt3 45603 climeldmeqmpt3 45610 climinf2mpt 45635 climinfmpt 45636 stoweidlem23 45944 stoweidlem34 45955 stoweidlem36 45957 wallispilem5 45990 stirlinglem4 45998 stirlinglem11 46005 stirlinglem12 46006 stirlinglem13 46007 stirlinglem14 46008 sge0lempt 46331 sge0isummpt2 46353 meadjiun 46387 hoimbl2 46586 vonhoire 46593 |
Copyright terms: Public domain | W3C validator |