![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptf | Structured version Visualization version GIF version |
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 6997 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptf | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | fvmptf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
3 | 2 | nfel1 2920 | . . . 4 ⊢ Ⅎ𝑥 𝐶 ∈ V |
4 | fvmptf.4 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
5 | nfmpt1 5257 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
6 | 4, 5 | nfcxfr 2902 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
7 | 6, 1 | nffv 6902 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
8 | 7, 2 | nfeq 2917 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐴) = 𝐶 |
9 | 3, 8 | nfim 1900 | . . 3 ⊢ Ⅎ𝑥(𝐶 ∈ V → (𝐹‘𝐴) = 𝐶) |
10 | fvmptf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
11 | 10 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
12 | fveq2 6892 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
13 | 12, 10 | eqeq12d 2749 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝐴) = 𝐶)) |
14 | 11, 13 | imbi12d 345 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹‘𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶))) |
15 | 4 | fvmpt2 7010 | . . . 4 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
16 | 15 | ex 414 | . . 3 ⊢ (𝑥 ∈ 𝐷 → (𝐵 ∈ V → (𝐹‘𝑥) = 𝐵)) |
17 | 1, 9, 14, 16 | vtoclgaf 3565 | . 2 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶)) |
18 | elex 3493 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
19 | 17, 18 | impel 507 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Ⅎwnfc 2884 Vcvv 3475 ↦ cmpt 5232 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 |
This theorem is referenced by: fvmptnf 7021 elfvmptrab1w 7025 elfvmptrab1 7026 elovmpt3rab1 7666 rdgsucmptf 8428 frsucmpt 8438 fprodntriv 15886 prodss 15891 fprodefsum 16038 dvfsumabs 25540 dvfsumlem1 25543 dvfsumlem4 25546 dvfsum2 25551 dchrisumlem2 26993 dchrisumlem3 26994 rmfsupp2 32418 ptrest 36535 hlhilset 40853 fsumsermpt 44343 mulc1cncfg 44353 expcnfg 44355 climsubmpt 44424 climeldmeqmpt 44432 climfveqmpt 44435 fnlimfvre 44438 climfveqmpt3 44446 climeldmeqmpt3 44453 climinf2mpt 44478 climinfmpt 44479 stoweidlem23 44787 stoweidlem34 44798 stoweidlem36 44800 wallispilem5 44833 stirlinglem4 44841 stirlinglem11 44848 stirlinglem12 44849 stirlinglem13 44850 stirlinglem14 44851 sge0lempt 45174 sge0isummpt2 45196 meadjiun 45230 hoimbl2 45429 vonhoire 45436 |
Copyright terms: Public domain | W3C validator |