Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptf | Structured version Visualization version GIF version |
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 6855 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptf | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | fvmptf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
3 | 2 | nfel1 2922 | . . . 4 ⊢ Ⅎ𝑥 𝐶 ∈ V |
4 | fvmptf.4 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
5 | nfmpt1 5178 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
6 | 4, 5 | nfcxfr 2904 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
7 | 6, 1 | nffv 6766 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
8 | 7, 2 | nfeq 2919 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐴) = 𝐶 |
9 | 3, 8 | nfim 1900 | . . 3 ⊢ Ⅎ𝑥(𝐶 ∈ V → (𝐹‘𝐴) = 𝐶) |
10 | fvmptf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
11 | 10 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
12 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
13 | 12, 10 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝐴) = 𝐶)) |
14 | 11, 13 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹‘𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶))) |
15 | 4 | fvmpt2 6868 | . . . 4 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
16 | 15 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝐷 → (𝐵 ∈ V → (𝐹‘𝑥) = 𝐵)) |
17 | 1, 9, 14, 16 | vtoclgaf 3502 | . 2 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶)) |
18 | elex 3440 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
19 | 17, 18 | impel 505 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 Vcvv 3422 ↦ cmpt 5153 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: fvmptnf 6879 elfvmptrab1w 6883 elfvmptrab1 6884 elovmpt3rab1 7507 rdgsucmptf 8230 frsucmpt 8239 fprodntriv 15580 prodss 15585 fprodefsum 15732 dvfsumabs 25092 dvfsumlem1 25095 dvfsumlem4 25098 dvfsum2 25103 dchrisumlem2 26543 dchrisumlem3 26544 rmfsupp2 31394 ptrest 35703 hlhilset 39875 fsumsermpt 43010 mulc1cncfg 43020 expcnfg 43022 climsubmpt 43091 climeldmeqmpt 43099 climfveqmpt 43102 fnlimfvre 43105 climfveqmpt3 43113 climeldmeqmpt3 43120 climinf2mpt 43145 climinfmpt 43146 stoweidlem23 43454 stoweidlem34 43465 stoweidlem36 43467 wallispilem5 43500 stirlinglem4 43508 stirlinglem11 43515 stirlinglem12 43516 stirlinglem13 43517 stirlinglem14 43518 sge0lempt 43838 sge0isummpt2 43860 meadjiun 43894 hoimbl2 44093 vonhoire 44100 |
Copyright terms: Public domain | W3C validator |