MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptf Structured version   Visualization version   GIF version

Theorem fvmptf 6783
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 6760 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
fvmptf.1 𝑥𝐴
fvmptf.2 𝑥𝐶
fvmptf.3 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptf.4 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmptf ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
Distinct variable group:   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptf
StepHypRef Expression
1 fvmptf.1 . . 3 𝑥𝐴
2 fvmptf.2 . . . . 5 𝑥𝐶
32nfel1 2994 . . . 4 𝑥 𝐶 ∈ V
4 fvmptf.4 . . . . . . 7 𝐹 = (𝑥𝐷𝐵)
5 nfmpt1 5156 . . . . . . 7 𝑥(𝑥𝐷𝐵)
64, 5nfcxfr 2975 . . . . . 6 𝑥𝐹
76, 1nffv 6674 . . . . 5 𝑥(𝐹𝐴)
87, 2nfeq 2991 . . . 4 𝑥(𝐹𝐴) = 𝐶
93, 8nfim 1893 . . 3 𝑥(𝐶 ∈ V → (𝐹𝐴) = 𝐶)
10 fvmptf.3 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
1110eleq1d 2897 . . . 4 (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V))
12 fveq2 6664 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1312, 10eqeq12d 2837 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥) = 𝐵 ↔ (𝐹𝐴) = 𝐶))
1411, 13imbi12d 347 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹𝐴) = 𝐶)))
154fvmpt2 6773 . . . 4 ((𝑥𝐷𝐵 ∈ V) → (𝐹𝑥) = 𝐵)
1615ex 415 . . 3 (𝑥𝐷 → (𝐵 ∈ V → (𝐹𝑥) = 𝐵))
171, 9, 14, 16vtoclgaf 3572 . 2 (𝐴𝐷 → (𝐶 ∈ V → (𝐹𝐴) = 𝐶))
18 elex 3512 . 2 (𝐶𝑉𝐶 ∈ V)
1917, 18impel 508 1 ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wnfc 2961  Vcvv 3494  cmpt 5138  cfv 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fv 6357
This theorem is referenced by:  fvmptnf  6784  elfvmptrab1w  6788  elfvmptrab1  6789  elovmpt3rab1  7399  rdgsucmptf  8058  frsucmpt  8067  fprodntriv  15290  prodss  15295  fprodefsum  15442  dvfsumabs  24614  dvfsumlem1  24617  dvfsumlem4  24620  dvfsum2  24625  dchrisumlem2  26060  dchrisumlem3  26061  rmfsupp2  30861  ptrest  34885  hlhilset  39064  fsumsermpt  41853  mulc1cncfg  41863  expcnfg  41865  climsubmpt  41934  climeldmeqmpt  41942  climfveqmpt  41945  fnlimfvre  41948  climfveqmpt3  41956  climeldmeqmpt3  41963  climinf2mpt  41988  climinfmpt  41989  stoweidlem23  42302  stoweidlem34  42313  stoweidlem36  42315  wallispilem5  42348  stirlinglem4  42356  stirlinglem11  42363  stirlinglem12  42364  stirlinglem13  42365  stirlinglem14  42366  sge0lempt  42686  sge0isummpt2  42708  meadjiun  42742  hoimbl2  42941  vonhoire  42948
  Copyright terms: Public domain W3C validator