MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptf Structured version   Visualization version   GIF version

Theorem fvmptf 6878
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 6855 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
fvmptf.1 𝑥𝐴
fvmptf.2 𝑥𝐶
fvmptf.3 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptf.4 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmptf ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
Distinct variable group:   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptf
StepHypRef Expression
1 fvmptf.1 . . 3 𝑥𝐴
2 fvmptf.2 . . . . 5 𝑥𝐶
32nfel1 2922 . . . 4 𝑥 𝐶 ∈ V
4 fvmptf.4 . . . . . . 7 𝐹 = (𝑥𝐷𝐵)
5 nfmpt1 5178 . . . . . . 7 𝑥(𝑥𝐷𝐵)
64, 5nfcxfr 2904 . . . . . 6 𝑥𝐹
76, 1nffv 6766 . . . . 5 𝑥(𝐹𝐴)
87, 2nfeq 2919 . . . 4 𝑥(𝐹𝐴) = 𝐶
93, 8nfim 1900 . . 3 𝑥(𝐶 ∈ V → (𝐹𝐴) = 𝐶)
10 fvmptf.3 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
1110eleq1d 2823 . . . 4 (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V))
12 fveq2 6756 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1312, 10eqeq12d 2754 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥) = 𝐵 ↔ (𝐹𝐴) = 𝐶))
1411, 13imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹𝐴) = 𝐶)))
154fvmpt2 6868 . . . 4 ((𝑥𝐷𝐵 ∈ V) → (𝐹𝑥) = 𝐵)
1615ex 412 . . 3 (𝑥𝐷 → (𝐵 ∈ V → (𝐹𝑥) = 𝐵))
171, 9, 14, 16vtoclgaf 3502 . 2 (𝐴𝐷 → (𝐶 ∈ V → (𝐹𝐴) = 𝐶))
18 elex 3440 . 2 (𝐶𝑉𝐶 ∈ V)
1917, 18impel 505 1 ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wnfc 2886  Vcvv 3422  cmpt 5153  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  fvmptnf  6879  elfvmptrab1w  6883  elfvmptrab1  6884  elovmpt3rab1  7507  rdgsucmptf  8230  frsucmpt  8239  fprodntriv  15580  prodss  15585  fprodefsum  15732  dvfsumabs  25092  dvfsumlem1  25095  dvfsumlem4  25098  dvfsum2  25103  dchrisumlem2  26543  dchrisumlem3  26544  rmfsupp2  31394  ptrest  35703  hlhilset  39875  fsumsermpt  43010  mulc1cncfg  43020  expcnfg  43022  climsubmpt  43091  climeldmeqmpt  43099  climfveqmpt  43102  fnlimfvre  43105  climfveqmpt3  43113  climeldmeqmpt3  43120  climinf2mpt  43145  climinfmpt  43146  stoweidlem23  43454  stoweidlem34  43465  stoweidlem36  43467  wallispilem5  43500  stirlinglem4  43508  stirlinglem11  43515  stirlinglem12  43516  stirlinglem13  43517  stirlinglem14  43518  sge0lempt  43838  sge0isummpt2  43860  meadjiun  43894  hoimbl2  44093  vonhoire  44100
  Copyright terms: Public domain W3C validator