MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptf Structured version   Visualization version   GIF version

Theorem fvmptf 6955
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 6932 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
fvmptf.1 𝑥𝐴
fvmptf.2 𝑥𝐶
fvmptf.3 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptf.4 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmptf ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
Distinct variable group:   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptf
StepHypRef Expression
1 fvmptf.1 . . 3 𝑥𝐴
2 fvmptf.2 . . . . 5 𝑥𝐶
32nfel1 2908 . . . 4 𝑥 𝐶 ∈ V
4 fvmptf.4 . . . . . . 7 𝐹 = (𝑥𝐷𝐵)
5 nfmpt1 5194 . . . . . . 7 𝑥(𝑥𝐷𝐵)
64, 5nfcxfr 2889 . . . . . 6 𝑥𝐹
76, 1nffv 6836 . . . . 5 𝑥(𝐹𝐴)
87, 2nfeq 2905 . . . 4 𝑥(𝐹𝐴) = 𝐶
93, 8nfim 1896 . . 3 𝑥(𝐶 ∈ V → (𝐹𝐴) = 𝐶)
10 fvmptf.3 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
1110eleq1d 2813 . . . 4 (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V))
12 fveq2 6826 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1312, 10eqeq12d 2745 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥) = 𝐵 ↔ (𝐹𝐴) = 𝐶))
1411, 13imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹𝐴) = 𝐶)))
154fvmpt2 6945 . . . 4 ((𝑥𝐷𝐵 ∈ V) → (𝐹𝑥) = 𝐵)
1615ex 412 . . 3 (𝑥𝐷 → (𝐵 ∈ V → (𝐹𝑥) = 𝐵))
171, 9, 14, 16vtoclgaf 3533 . 2 (𝐴𝐷 → (𝐶 ∈ V → (𝐹𝐴) = 𝐶))
18 elex 3459 . 2 (𝐶𝑉𝐶 ∈ V)
1917, 18impel 505 1 ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  Vcvv 3438  cmpt 5176  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  fvmptnf  6956  elfvmptrab1w  6961  elfvmptrab1  6962  elovmpt3rab1  7613  rdgsucmptf  8357  frsucmpt  8367  fprodntriv  15867  prodss  15872  fprodefsum  16020  dvfsumabs  25945  dvfsumlem1  25948  dvfsumlem4  25952  dvfsum2  25957  dchrisumlem2  27417  dchrisumlem3  27418  rmfsupp2  33188  ptrest  37598  hlhilset  41913  orbitclmpt  44932  fsumsermpt  45561  mulc1cncfg  45571  expcnfg  45573  climsubmpt  45642  climeldmeqmpt  45650  climfveqmpt  45653  fnlimfvre  45656  climfveqmpt3  45664  climeldmeqmpt3  45671  climinf2mpt  45696  climinfmpt  45697  stoweidlem23  46005  stoweidlem34  46016  stoweidlem36  46018  wallispilem5  46051  stirlinglem4  46059  stirlinglem11  46066  stirlinglem12  46067  stirlinglem13  46068  stirlinglem14  46069  sge0lempt  46392  sge0isummpt2  46414  meadjiun  46448  hoimbl2  46647  vonhoire  46654
  Copyright terms: Public domain W3C validator