Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptf | Structured version Visualization version GIF version |
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 6873 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptf | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | fvmptf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
3 | 2 | nfel1 2923 | . . . 4 ⊢ Ⅎ𝑥 𝐶 ∈ V |
4 | fvmptf.4 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
5 | nfmpt1 5182 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
6 | 4, 5 | nfcxfr 2905 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
7 | 6, 1 | nffv 6784 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
8 | 7, 2 | nfeq 2920 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐴) = 𝐶 |
9 | 3, 8 | nfim 1899 | . . 3 ⊢ Ⅎ𝑥(𝐶 ∈ V → (𝐹‘𝐴) = 𝐶) |
10 | fvmptf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
11 | 10 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
12 | fveq2 6774 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
13 | 12, 10 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝐴) = 𝐶)) |
14 | 11, 13 | imbi12d 345 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹‘𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶))) |
15 | 4 | fvmpt2 6886 | . . . 4 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
16 | 15 | ex 413 | . . 3 ⊢ (𝑥 ∈ 𝐷 → (𝐵 ∈ V → (𝐹‘𝑥) = 𝐵)) |
17 | 1, 9, 14, 16 | vtoclgaf 3512 | . 2 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶)) |
18 | elex 3450 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
19 | 17, 18 | impel 506 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 Vcvv 3432 ↦ cmpt 5157 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: fvmptnf 6897 elfvmptrab1w 6901 elfvmptrab1 6902 elovmpt3rab1 7529 rdgsucmptf 8259 frsucmpt 8269 fprodntriv 15652 prodss 15657 fprodefsum 15804 dvfsumabs 25187 dvfsumlem1 25190 dvfsumlem4 25193 dvfsum2 25198 dchrisumlem2 26638 dchrisumlem3 26639 rmfsupp2 31492 ptrest 35776 hlhilset 39948 fsumsermpt 43120 mulc1cncfg 43130 expcnfg 43132 climsubmpt 43201 climeldmeqmpt 43209 climfveqmpt 43212 fnlimfvre 43215 climfveqmpt3 43223 climeldmeqmpt3 43230 climinf2mpt 43255 climinfmpt 43256 stoweidlem23 43564 stoweidlem34 43575 stoweidlem36 43577 wallispilem5 43610 stirlinglem4 43618 stirlinglem11 43625 stirlinglem12 43626 stirlinglem13 43627 stirlinglem14 43628 sge0lempt 43948 sge0isummpt2 43970 meadjiun 44004 hoimbl2 44203 vonhoire 44210 |
Copyright terms: Public domain | W3C validator |