| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptf | Structured version Visualization version GIF version | ||
| Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 6989 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
| fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptf | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | fvmptf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 2 | nfel1 2916 | . . . 4 ⊢ Ⅎ𝑥 𝐶 ∈ V |
| 4 | fvmptf.4 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 5 | nfmpt1 5225 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 6 | 4, 5 | nfcxfr 2897 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
| 7 | 6, 1 | nffv 6891 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| 8 | 7, 2 | nfeq 2913 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐴) = 𝐶 |
| 9 | 3, 8 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝐶 ∈ V → (𝐹‘𝐴) = 𝐶) |
| 10 | fvmptf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 11 | 10 | eleq1d 2820 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
| 12 | fveq2 6881 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 13 | 12, 10 | eqeq12d 2752 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝐴) = 𝐶)) |
| 14 | 11, 13 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹‘𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶))) |
| 15 | 4 | fvmpt2 7002 | . . . 4 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
| 16 | 15 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝐷 → (𝐵 ∈ V → (𝐹‘𝑥) = 𝐵)) |
| 17 | 1, 9, 14, 16 | vtoclgaf 3560 | . 2 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶)) |
| 18 | elex 3485 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
| 19 | 17, 18 | impel 505 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2884 Vcvv 3464 ↦ cmpt 5206 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 |
| This theorem is referenced by: fvmptnf 7013 elfvmptrab1w 7018 elfvmptrab1 7019 elovmpt3rab1 7672 rdgsucmptf 8447 frsucmpt 8457 fprodntriv 15963 prodss 15968 fprodefsum 16116 dvfsumabs 25986 dvfsumlem1 25989 dvfsumlem4 25993 dvfsum2 25998 dchrisumlem2 27458 dchrisumlem3 27459 rmfsupp2 33238 ptrest 37648 hlhilset 41958 orbitclmpt 44950 fsumsermpt 45575 mulc1cncfg 45585 expcnfg 45587 climsubmpt 45656 climeldmeqmpt 45664 climfveqmpt 45667 fnlimfvre 45670 climfveqmpt3 45678 climeldmeqmpt3 45685 climinf2mpt 45710 climinfmpt 45711 stoweidlem23 46019 stoweidlem34 46030 stoweidlem36 46032 wallispilem5 46065 stirlinglem4 46073 stirlinglem11 46080 stirlinglem12 46081 stirlinglem13 46082 stirlinglem14 46083 sge0lempt 46406 sge0isummpt2 46428 meadjiun 46462 hoimbl2 46661 vonhoire 46668 |
| Copyright terms: Public domain | W3C validator |