MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2splitlem Structured version   Visualization version   GIF version

Theorem itg2splitlem 25722
Description: Lemma for itg2split 25723. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2split.a (𝜑𝐴 ∈ dom vol)
itg2split.b (𝜑𝐵 ∈ dom vol)
itg2split.i (𝜑 → (vol*‘(𝐴𝐵)) = 0)
itg2split.u (𝜑𝑈 = (𝐴𝐵))
itg2split.c ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
itg2split.f 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
itg2split.g 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
itg2split.h 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
itg2split.sf (𝜑 → (∫2𝐹) ∈ ℝ)
itg2split.sg (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2splitlem (𝜑 → (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem itg2splitlem
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → 𝑓 ∈ dom ∫1)
2 itg1cl 25658 . . . . . 6 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
31, 2syl 17 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫1𝑓) ∈ ℝ)
4 itg2split.a . . . . . . . . 9 (𝜑𝐴 ∈ dom vol)
54adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → 𝐴 ∈ dom vol)
6 eqid 2725 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))
76i1fres 25679 . . . . . . . 8 ((𝑓 ∈ dom ∫1𝐴 ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∈ dom ∫1)
81, 5, 7syl2anc 582 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∈ dom ∫1)
9 itg1cl 25658 . . . . . . 7 ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) ∈ ℝ)
108, 9syl 17 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) ∈ ℝ)
11 itg2split.b . . . . . . . . 9 (𝜑𝐵 ∈ dom vol)
1211adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → 𝐵 ∈ dom vol)
13 eqid 2725 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))
1413i1fres 25679 . . . . . . . 8 ((𝑓 ∈ dom ∫1𝐵 ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∈ dom ∫1)
151, 12, 14syl2anc 582 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∈ dom ∫1)
16 itg1cl 25658 . . . . . . 7 ((𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) ∈ ℝ)
1715, 16syl 17 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) ∈ ℝ)
1810, 17readdcld 11275 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))) ∈ ℝ)
19 itg2split.sf . . . . . . 7 (𝜑 → (∫2𝐹) ∈ ℝ)
20 itg2split.sg . . . . . . 7 (𝜑 → (∫2𝐺) ∈ ℝ)
2119, 20readdcld 11275 . . . . . 6 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ)
2221adantr 479 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ)
23 inss1 4227 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
24 mblss 25504 . . . . . . . . . 10 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
254, 24syl 17 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
2623, 25sstrid 3988 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ ℝ)
2726adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (𝐴𝐵) ⊆ ℝ)
28 itg2split.i . . . . . . . 8 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
2928adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (vol*‘(𝐴𝐵)) = 0)
30 reex 11231 . . . . . . . . . . 11 ℝ ∈ V
3130a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ V)
32 fvex 6909 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
33 c0ex 11240 . . . . . . . . . . . 12 0 ∈ V
3432, 33ifex 4580 . . . . . . . . . . 11 if(𝑥𝐴, (𝑓𝑥), 0) ∈ V
3534a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (𝑓𝑥), 0) ∈ V)
3632, 33ifex 4580 . . . . . . . . . . 11 if(𝑥𝐵, (𝑓𝑥), 0) ∈ V
3736a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐵, (𝑓𝑥), 0) ∈ V)
38 eqidd 2726 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)))
39 eqidd 2726 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))
4031, 35, 37, 38, 39offval2 7705 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0))))
4140adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0))))
428, 15i1fadd 25668 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) ∈ dom ∫1)
4341, 42eqeltrrd 2826 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0))) ∈ dom ∫1)
44 i1ff 25649 . . . . . . . . . . . . . 14 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
451, 44syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → 𝑓:ℝ⟶ℝ)
46 eldifi 4123 . . . . . . . . . . . . 13 (𝑦 ∈ (ℝ ∖ (𝐴𝐵)) → 𝑦 ∈ ℝ)
47 ffvelcdm 7090 . . . . . . . . . . . . 13 ((𝑓:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ∈ ℝ)
4845, 46, 47syl2an 594 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑦) ∈ ℝ)
4948leidd 11812 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑦) ≤ (𝑓𝑦))
5049adantr 479 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → (𝑓𝑦) ≤ (𝑓𝑦))
51 iftrue 4536 . . . . . . . . . . . . 13 (𝑦𝐴 → if(𝑦𝐴, (𝑓𝑦), 0) = (𝑓𝑦))
5251adantl 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → if(𝑦𝐴, (𝑓𝑦), 0) = (𝑓𝑦))
53 eldifn 4124 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ℝ ∖ (𝐴𝐵)) → ¬ 𝑦 ∈ (𝐴𝐵))
5453adantl 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ 𝑦 ∈ (𝐴𝐵))
55 elin 3960 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
5654, 55sylnib 327 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ (𝑦𝐴𝑦𝐵))
57 imnan 398 . . . . . . . . . . . . . . 15 ((𝑦𝐴 → ¬ 𝑦𝐵) ↔ ¬ (𝑦𝐴𝑦𝐵))
5856, 57sylibr 233 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑦𝐴 → ¬ 𝑦𝐵))
5958imp 405 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → ¬ 𝑦𝐵)
60 iffalse 4539 . . . . . . . . . . . . 13 𝑦𝐵 → if(𝑦𝐵, (𝑓𝑦), 0) = 0)
6159, 60syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → if(𝑦𝐵, (𝑓𝑦), 0) = 0)
6252, 61oveq12d 7437 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)) = ((𝑓𝑦) + 0))
6348recnd 11274 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑦) ∈ ℂ)
6463adantr 479 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → (𝑓𝑦) ∈ ℂ)
6564addridd 11446 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → ((𝑓𝑦) + 0) = (𝑓𝑦))
6662, 65eqtrd 2765 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)) = (𝑓𝑦))
6750, 66breqtrrd 5177 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → (𝑓𝑦) ≤ (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)))
6849ad2antrr 724 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) ∧ 𝑦𝐵) → (𝑓𝑦) ≤ (𝑓𝑦))
69 iftrue 4536 . . . . . . . . . . . . 13 (𝑦𝐵 → if(𝑦𝐵, (𝑓𝑦), 0) = (𝑓𝑦))
7069adantl 480 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) ∧ 𝑦𝐵) → if(𝑦𝐵, (𝑓𝑦), 0) = (𝑓𝑦))
7168, 70breqtrrd 5177 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) ∧ 𝑦𝐵) → (𝑓𝑦) ≤ if(𝑦𝐵, (𝑓𝑦), 0))
72 itg2split.u . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑈 = (𝐴𝐵))
7372ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → 𝑈 = (𝐴𝐵))
7473eleq2d 2811 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑦𝑈𝑦 ∈ (𝐴𝐵)))
75 elun 4145 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
7674, 75bitrdi 286 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑦𝑈 ↔ (𝑦𝐴𝑦𝐵)))
7776notbid 317 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (¬ 𝑦𝑈 ↔ ¬ (𝑦𝐴𝑦𝐵)))
78 ioran 981 . . . . . . . . . . . . . . . 16 (¬ (𝑦𝐴𝑦𝐵) ↔ (¬ 𝑦𝐴 ∧ ¬ 𝑦𝐵))
7977, 78bitrdi 286 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (¬ 𝑦𝑈 ↔ (¬ 𝑦𝐴 ∧ ¬ 𝑦𝐵)))
8079biimpar 476 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ (¬ 𝑦𝐴 ∧ ¬ 𝑦𝐵)) → ¬ 𝑦𝑈)
81 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → 𝑓r𝐻)
8245ffnd 6724 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → 𝑓 Fn ℝ)
83 itg2split.c . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
8483adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
85 0e0iccpnf 13471 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ (0[,]+∞)
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑈) → 0 ∈ (0[,]+∞))
8784, 86ifclda 4565 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
88 itg2split.h . . . . . . . . . . . . . . . . . . . . . . 23 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
8987, 88fmptd 7123 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐻:ℝ⟶(0[,]+∞))
9089ffnd 6724 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐻 Fn ℝ)
9190adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → 𝐻 Fn ℝ)
9230a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → ℝ ∈ V)
93 inidm 4217 . . . . . . . . . . . . . . . . . . . 20 (ℝ ∩ ℝ) = ℝ
94 eqidd 2726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) = (𝑓𝑦))
95 eqidd 2726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ ℝ) → (𝐻𝑦) = (𝐻𝑦))
9682, 91, 92, 92, 93, 94, 95ofrfval 7695 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (𝑓r𝐻 ↔ ∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐻𝑦)))
9781, 96mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → ∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐻𝑦))
9897r19.21bi 3238 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ≤ (𝐻𝑦))
9946, 98sylan2 591 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑦) ≤ (𝐻𝑦))
10099adantr 479 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝑈) → (𝑓𝑦) ≤ (𝐻𝑦))
10146adantl 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → 𝑦 ∈ ℝ)
102 eldif 3954 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ℝ ∖ 𝑈) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦𝑈))
103 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑥𝑦
104 nfmpt1 5257 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
10588, 104nfcxfr 2889 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐻
106105, 103nffv 6906 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐻𝑦)
107106nfeq1 2907 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑦) = 0
108 fveqeq2 6905 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐻𝑥) = 0 ↔ (𝐻𝑦) = 0))
109 eldif 3954 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℝ ∖ 𝑈) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝑈))
11088fvmpt2i 7014 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ → (𝐻𝑥) = ( I ‘if(𝑥𝑈, 𝐶, 0)))
111 iffalse 4539 . . . . . . . . . . . . . . . . . . . . . 22 𝑥𝑈 → if(𝑥𝑈, 𝐶, 0) = 0)
112111fveq2d 6900 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑈 → ( I ‘if(𝑥𝑈, 𝐶, 0)) = ( I ‘0))
113 0cn 11238 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℂ
114 fvi 6973 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ ℂ → ( I ‘0) = 0)
115113, 114ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ( I ‘0) = 0
116112, 115eqtrdi 2781 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑈 → ( I ‘if(𝑥𝑈, 𝐶, 0)) = 0)
117110, 116sylan9eq 2785 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ ¬ 𝑥𝑈) → (𝐻𝑥) = 0)
118109, 117sylbi 216 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℝ ∖ 𝑈) → (𝐻𝑥) = 0)
119103, 107, 108, 118vtoclgaf 3555 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ℝ ∖ 𝑈) → (𝐻𝑦) = 0)
120102, 119sylbir 234 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ ¬ 𝑦𝑈) → (𝐻𝑦) = 0)
121101, 120sylan 578 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝑈) → (𝐻𝑦) = 0)
122100, 121breqtrd 5175 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝑈) → (𝑓𝑦) ≤ 0)
12380, 122syldan 589 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ (¬ 𝑦𝐴 ∧ ¬ 𝑦𝐵)) → (𝑓𝑦) ≤ 0)
124123anassrs 466 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) ∧ ¬ 𝑦𝐵) → (𝑓𝑦) ≤ 0)
12560adantl 480 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) ∧ ¬ 𝑦𝐵) → if(𝑦𝐵, (𝑓𝑦), 0) = 0)
126124, 125breqtrrd 5177 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) ∧ ¬ 𝑦𝐵) → (𝑓𝑦) ≤ if(𝑦𝐵, (𝑓𝑦), 0))
12771, 126pm2.61dan 811 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → (𝑓𝑦) ≤ if(𝑦𝐵, (𝑓𝑦), 0))
128 iffalse 4539 . . . . . . . . . . . . 13 𝑦𝐴 → if(𝑦𝐴, (𝑓𝑦), 0) = 0)
129128adantl 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → if(𝑦𝐴, (𝑓𝑦), 0) = 0)
130129oveq1d 7434 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)) = (0 + if(𝑦𝐵, (𝑓𝑦), 0)))
131 0re 11248 . . . . . . . . . . . . . . 15 0 ∈ ℝ
132 ifcl 4575 . . . . . . . . . . . . . . 15 (((𝑓𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑦𝐵, (𝑓𝑦), 0) ∈ ℝ)
13348, 131, 132sylancl 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → if(𝑦𝐵, (𝑓𝑦), 0) ∈ ℝ)
134133recnd 11274 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → if(𝑦𝐵, (𝑓𝑦), 0) ∈ ℂ)
135134adantr 479 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → if(𝑦𝐵, (𝑓𝑦), 0) ∈ ℂ)
136135addlidd 11447 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → (0 + if(𝑦𝐵, (𝑓𝑦), 0)) = if(𝑦𝐵, (𝑓𝑦), 0))
137130, 136eqtrd 2765 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)) = if(𝑦𝐵, (𝑓𝑦), 0))
138127, 137breqtrrd 5177 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → (𝑓𝑦) ≤ (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)))
13967, 138pm2.61dan 811 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑦) ≤ (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)))
140 eleq1w 2808 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
141 fveq2 6896 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
142140, 141ifbieq1d 4554 . . . . . . . . . . 11 (𝑥 = 𝑦 → if(𝑥𝐴, (𝑓𝑥), 0) = if(𝑦𝐴, (𝑓𝑦), 0))
143 eleq1w 2808 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
144143, 141ifbieq1d 4554 . . . . . . . . . . 11 (𝑥 = 𝑦 → if(𝑥𝐵, (𝑓𝑥), 0) = if(𝑦𝐵, (𝑓𝑦), 0))
145142, 144oveq12d 7437 . . . . . . . . . 10 (𝑥 = 𝑦 → (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)) = (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)))
146 eqid 2725 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))
147 ovex 7452 . . . . . . . . . 10 (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)) ∈ V
148145, 146, 147fvmpt 7004 . . . . . . . . 9 (𝑦 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))‘𝑦) = (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)))
149101, 148syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))‘𝑦) = (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)))
150139, 149breqtrrd 5177 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑦) ≤ ((𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))‘𝑦))
1511, 27, 29, 43, 150itg1lea 25686 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫1𝑓) ≤ (∫1‘(𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))))
15241fveq2d 6900 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫1‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))) = (∫1‘(𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))))
1538, 15itg1add 25675 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫1‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))) = ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))))
154152, 153eqtr3d 2767 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫1‘(𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))) = ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))))
155151, 154breqtrd 5175 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫1𝑓) ≤ ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))))
15619adantr 479 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫2𝐹) ∈ ℝ)
15720adantr 479 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫2𝐺) ∈ ℝ)
158 ssun1 4170 . . . . . . . . . . . . . 14 𝐴 ⊆ (𝐴𝐵)
159158, 72sseqtrrid 4030 . . . . . . . . . . . . 13 (𝜑𝐴𝑈)
160159sselda 3976 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥𝑈)
161160adantlr 713 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝑈)
162161, 84syldan 589 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
16385a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
164162, 163ifclda 4565 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
165 itg2split.f . . . . . . . . 9 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
166164, 165fmptd 7123 . . . . . . . 8 (𝜑𝐹:ℝ⟶(0[,]+∞))
167166adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → 𝐹:ℝ⟶(0[,]+∞))
168 nfv 1909 . . . . . . . . . 10 𝑥𝜑
169 nfv 1909 . . . . . . . . . . 11 𝑥 𝑓 ∈ dom ∫1
170 nfcv 2891 . . . . . . . . . . . 12 𝑥𝑓
171 nfcv 2891 . . . . . . . . . . . 12 𝑥r
172170, 171, 105nfbr 5196 . . . . . . . . . . 11 𝑥 𝑓r𝐻
173169, 172nfan 1894 . . . . . . . . . 10 𝑥(𝑓 ∈ dom ∫1𝑓r𝐻)
174168, 173nfan 1894 . . . . . . . . 9 𝑥(𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻))
1755, 24syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → 𝐴 ⊆ ℝ)
176175sselda 3976 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
17730a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → ℝ ∈ V)
17832a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ V)
17987adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
18044adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 ∈ dom ∫1) → 𝑓:ℝ⟶ℝ)
181180feqmptd 6966 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
18288a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0)))
183177, 178, 179, 181, 182ofrfval2 7706 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r𝐻 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝑈, 𝐶, 0)))
184183biimpd 228 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r𝐻 → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝑈, 𝐶, 0)))
185184impr 453 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝑈, 𝐶, 0))
186185r19.21bi 3238 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ≤ if(𝑥𝑈, 𝐶, 0))
187176, 186syldan 589 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝑈, 𝐶, 0))
188160adantlr 713 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐴) → 𝑥𝑈)
189188iftrued 4538 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = 𝐶)
190187, 189breqtrd 5175 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ 𝐶)
191 iftrue 4536 . . . . . . . . . . . . 13 (𝑥𝐴 → if(𝑥𝐴, (𝑓𝑥), 0) = (𝑓𝑥))
192191adantl 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐴) → if(𝑥𝐴, (𝑓𝑥), 0) = (𝑓𝑥))
193 iftrue 4536 . . . . . . . . . . . . 13 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
194193adantl 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 𝐶)
195190, 192, 1943brtr4d 5181 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐴) → if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0))
196 0le0 12346 . . . . . . . . . . . . . 14 0 ≤ 0
197196a1i 11 . . . . . . . . . . . . 13 𝑥𝐴 → 0 ≤ 0)
198 iffalse 4539 . . . . . . . . . . . . 13 𝑥𝐴 → if(𝑥𝐴, (𝑓𝑥), 0) = 0)
199 iffalse 4539 . . . . . . . . . . . . 13 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
200197, 198, 1993brtr4d 5181 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0))
201200adantl 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0))
202195, 201pm2.61dan 811 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0))
203202a1d 25 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (𝑥 ∈ ℝ → if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0)))
204174, 203ralrimi 3244 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → ∀𝑥 ∈ ℝ if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0))
205165a1i 11 . . . . . . . . . 10 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
20631, 35, 164, 38, 205ofrfval2 7706 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0)))
207206adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0)))
208204, 207mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘r𝐹)
209 itg2ub 25707 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘r𝐹) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) ≤ (∫2𝐹))
210167, 8, 208, 209syl3anc 1368 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) ≤ (∫2𝐹))
211 ssun2 4171 . . . . . . . . . . . . . 14 𝐵 ⊆ (𝐴𝐵)
212211, 72sseqtrrid 4030 . . . . . . . . . . . . 13 (𝜑𝐵𝑈)
213212sselda 3976 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → 𝑥𝑈)
214213adantlr 713 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥𝑈)
215214, 84syldan 589 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
21685a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
217215, 216ifclda 4565 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
218 itg2split.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
219217, 218fmptd 7123 . . . . . . . 8 (𝜑𝐺:ℝ⟶(0[,]+∞))
220219adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → 𝐺:ℝ⟶(0[,]+∞))
221 mblss 25504 . . . . . . . . . . . . . . . 16 (𝐵 ∈ dom vol → 𝐵 ⊆ ℝ)
22212, 221syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → 𝐵 ⊆ ℝ)
223222sselda 3976 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐵) → 𝑥 ∈ ℝ)
224223, 186syldan 589 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐵) → (𝑓𝑥) ≤ if(𝑥𝑈, 𝐶, 0))
225213adantlr 713 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐵) → 𝑥𝑈)
226225iftrued 4538 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐵) → if(𝑥𝑈, 𝐶, 0) = 𝐶)
227224, 226breqtrd 5175 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐵) → (𝑓𝑥) ≤ 𝐶)
228 iftrue 4536 . . . . . . . . . . . . 13 (𝑥𝐵 → if(𝑥𝐵, (𝑓𝑥), 0) = (𝑓𝑥))
229228adantl 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐵) → if(𝑥𝐵, (𝑓𝑥), 0) = (𝑓𝑥))
230 iftrue 4536 . . . . . . . . . . . . 13 (𝑥𝐵 → if(𝑥𝐵, 𝐶, 0) = 𝐶)
231230adantl 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐵) → if(𝑥𝐵, 𝐶, 0) = 𝐶)
232227, 229, 2313brtr4d 5181 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ 𝑥𝐵) → if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0))
233196a1i 11 . . . . . . . . . . . . 13 𝑥𝐵 → 0 ≤ 0)
234 iffalse 4539 . . . . . . . . . . . . 13 𝑥𝐵 → if(𝑥𝐵, (𝑓𝑥), 0) = 0)
235 iffalse 4539 . . . . . . . . . . . . 13 𝑥𝐵 → if(𝑥𝐵, 𝐶, 0) = 0)
236233, 234, 2353brtr4d 5181 . . . . . . . . . . . 12 𝑥𝐵 → if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0))
237236adantl 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) ∧ ¬ 𝑥𝐵) → if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0))
238232, 237pm2.61dan 811 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0))
239238a1d 25 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (𝑥 ∈ ℝ → if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0)))
240174, 239ralrimi 3244 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → ∀𝑥 ∈ ℝ if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0))
241218a1i 11 . . . . . . . . . 10 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0)))
24231, 37, 217, 39, 241ofrfval2 7706 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∘r𝐺 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0)))
243242adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∘r𝐺 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0)))
244240, 243mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∘r𝐺)
245 itg2ub 25707 . . . . . . 7 ((𝐺:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∘r𝐺) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) ≤ (∫2𝐺))
246220, 15, 244, 245syl3anc 1368 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) ≤ (∫2𝐺))
24710, 17, 156, 157, 210, 246le2addd 11865 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))) ≤ ((∫2𝐹) + (∫2𝐺)))
2483, 18, 22, 155, 247letrd 11403 . . . 4 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓r𝐻)) → (∫1𝑓) ≤ ((∫2𝐹) + (∫2𝐺)))
249248expr 455 . . 3 ((𝜑𝑓 ∈ dom ∫1) → (𝑓r𝐻 → (∫1𝑓) ≤ ((∫2𝐹) + (∫2𝐺))))
250249ralrimiva 3135 . 2 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓r𝐻 → (∫1𝑓) ≤ ((∫2𝐹) + (∫2𝐺))))
25121rexrd 11296 . . 3 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*)
252 itg2leub 25708 . . 3 ((𝐻:ℝ⟶(0[,]+∞) ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*) → ((∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐻 → (∫1𝑓) ≤ ((∫2𝐹) + (∫2𝐺)))))
25389, 251, 252syl2anc 582 . 2 (𝜑 → ((∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐻 → (∫1𝑓) ≤ ((∫2𝐹) + (∫2𝐺)))))
254250, 253mpbird 256 1 (𝜑 → (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  cdif 3941  cun 3942  cin 3943  wss 3944  ifcif 4530   class class class wbr 5149  cmpt 5232   I cid 5575  dom cdm 5678   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683  r cofr 7684  cc 11138  cr 11139  0cc0 11140   + caddc 11143  +∞cpnf 11277  *cxr 11279  cle 11281  [,]cicc 13362  vol*covol 25435  volcvol 25436  1citg1 25588  2citg2 25589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-rest 17407  df-topgen 17428  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22840  df-topon 22857  df-bases 22893  df-cmp 23335  df-ovol 25437  df-vol 25438  df-mbf 25592  df-itg1 25593  df-itg2 25594
This theorem is referenced by:  itg2split  25723
  Copyright terms: Public domain W3C validator