Step | Hyp | Ref
| Expression |
1 | | simprl 768 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → 𝑓 ∈ dom
∫1) |
2 | | itg1cl 24837 |
. . . . . 6
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘𝑓) ∈ ℝ) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫1‘𝑓)
∈ ℝ) |
4 | | itg2split.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ dom vol) |
5 | 4 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → 𝐴 ∈ dom vol) |
6 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) |
7 | 6 | i1fres 24858 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
→ (𝑥 ∈ ℝ
↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∈ dom
∫1) |
8 | 1, 5, 7 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∈ dom
∫1) |
9 | | itg1cl 24837 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∈ dom ∫1 →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (𝑓‘𝑥), 0))) ∈ ℝ) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (𝑓‘𝑥), 0))) ∈ ℝ) |
11 | | itg2split.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ dom vol) |
12 | 11 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → 𝐵 ∈ dom vol) |
13 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)) |
14 | 13 | i1fres 24858 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝐵 ∈ dom vol)
→ (𝑥 ∈ ℝ
↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)) ∈ dom
∫1) |
15 | 1, 12, 14 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)) ∈ dom
∫1) |
16 | | itg1cl 24837 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)) ∈ dom ∫1 →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐵, (𝑓‘𝑥), 0))) ∈ ℝ) |
17 | 15, 16 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐵, (𝑓‘𝑥), 0))) ∈ ℝ) |
18 | 10, 17 | readdcld 10992 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)))) ∈ ℝ) |
19 | | itg2split.sf |
. . . . . . 7
⊢ (𝜑 →
(∫2‘𝐹)
∈ ℝ) |
20 | | itg2split.sg |
. . . . . . 7
⊢ (𝜑 →
(∫2‘𝐺)
∈ ℝ) |
21 | 19, 20 | readdcld 10992 |
. . . . . 6
⊢ (𝜑 →
((∫2‘𝐹) + (∫2‘𝐺)) ∈
ℝ) |
22 | 21 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
((∫2‘𝐹) + (∫2‘𝐺)) ∈
ℝ) |
23 | | inss1 4163 |
. . . . . . . . 9
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
24 | | mblss 24683 |
. . . . . . . . . 10
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
25 | 4, 24 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
26 | 23, 25 | sstrid 3932 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ ℝ) |
27 | 26 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → (𝐴 ∩ 𝐵) ⊆ ℝ) |
28 | | itg2split.i |
. . . . . . . 8
⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
29 | 28 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
30 | | reex 10950 |
. . . . . . . . . . 11
⊢ ℝ
∈ V |
31 | 30 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈
V) |
32 | | fvex 6780 |
. . . . . . . . . . . 12
⊢ (𝑓‘𝑥) ∈ V |
33 | | c0ex 10957 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
34 | 32, 33 | ifex 4510 |
. . . . . . . . . . 11
⊢ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) ∈ V |
35 | 34 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) ∈ V) |
36 | 32, 33 | ifex 4510 |
. . . . . . . . . . 11
⊢ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) ∈ V |
37 | 36 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) ∈ V) |
38 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0))) |
39 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0))) |
40 | 31, 35, 37, 38, 39 | offval2 7544 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) + if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)))) |
41 | 40 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) + if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)))) |
42 | 8, 15 | i1fadd 24847 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0))) ∈ dom
∫1) |
43 | 41, 42 | eqeltrrd 2840 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → (𝑥 ∈ ℝ ↦ (if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) + if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0))) ∈ dom
∫1) |
44 | | i1ff 24828 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
45 | 1, 44 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → 𝑓:ℝ⟶ℝ) |
46 | | eldifi 4061 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵)) → 𝑦 ∈ ℝ) |
47 | | ffvelrn 6952 |
. . . . . . . . . . . . 13
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑦 ∈ ℝ) →
(𝑓‘𝑦) ∈ ℝ) |
48 | 45, 46, 47 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → (𝑓‘𝑦) ∈ ℝ) |
49 | 48 | leidd 11529 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → (𝑓‘𝑦) ≤ (𝑓‘𝑦)) |
50 | 49 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ≤ (𝑓‘𝑦)) |
51 | | iftrue 4466 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐴 → if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) = (𝑓‘𝑦)) |
52 | 51 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ 𝑦 ∈ 𝐴) → if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) = (𝑓‘𝑦)) |
53 | | eldifn 4062 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵)) → ¬ 𝑦 ∈ (𝐴 ∩ 𝐵)) |
54 | 53 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → ¬ 𝑦 ∈ (𝐴 ∩ 𝐵)) |
55 | | elin 3903 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
56 | 54, 55 | sylnib 328 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → ¬ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
57 | | imnan 400 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝐵) ↔ ¬ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
58 | 56, 57 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → (𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝐵)) |
59 | 58 | imp 407 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ 𝑦 ∈ 𝐴) → ¬ 𝑦 ∈ 𝐵) |
60 | | iffalse 4469 |
. . . . . . . . . . . . 13
⊢ (¬
𝑦 ∈ 𝐵 → if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0) = 0) |
61 | 59, 60 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ 𝑦 ∈ 𝐴) → if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0) = 0) |
62 | 52, 61 | oveq12d 7286 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ 𝑦 ∈ 𝐴) → (if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0)) = ((𝑓‘𝑦) + 0)) |
63 | 48 | recnd 10991 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → (𝑓‘𝑦) ∈ ℂ) |
64 | 63 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ∈ ℂ) |
65 | 64 | addid1d 11163 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ 𝑦 ∈ 𝐴) → ((𝑓‘𝑦) + 0) = (𝑓‘𝑦)) |
66 | 62, 65 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ 𝑦 ∈ 𝐴) → (if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0)) = (𝑓‘𝑦)) |
67 | 50, 66 | breqtrrd 5102 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ≤ (if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0))) |
68 | 49 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑓 ∘r
≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝑓‘𝑦) ≤ (𝑓‘𝑦)) |
69 | | iftrue 4466 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐵 → if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0) = (𝑓‘𝑦)) |
70 | 69 | adantl 482 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑓 ∘r
≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0) = (𝑓‘𝑦)) |
71 | 68, 70 | breqtrrd 5102 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑓 ∘r
≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝑓‘𝑦) ≤ if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0)) |
72 | | itg2split.u |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
73 | 72 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → 𝑈 = (𝐴 ∪ 𝐵)) |
74 | 73 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → (𝑦 ∈ 𝑈 ↔ 𝑦 ∈ (𝐴 ∪ 𝐵))) |
75 | | elun 4083 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) |
76 | 74, 75 | bitrdi 287 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → (𝑦 ∈ 𝑈 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵))) |
77 | 76 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → (¬ 𝑦 ∈ 𝑈 ↔ ¬ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵))) |
78 | | ioran 981 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵) ↔ (¬ 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) |
79 | 77, 78 | bitrdi 287 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → (¬ 𝑦 ∈ 𝑈 ↔ (¬ 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵))) |
80 | 79 | biimpar 478 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ (¬ 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) → ¬ 𝑦 ∈ 𝑈) |
81 | | simprr 770 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → 𝑓 ∘r ≤ 𝐻) |
82 | 45 | ffnd 6594 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → 𝑓 Fn ℝ) |
83 | | itg2split.c |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (0[,]+∞)) |
84 | 83 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (0[,]+∞)) |
85 | | 0e0iccpnf 13179 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
(0[,]+∞) |
86 | 85 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝑈) → 0 ∈
(0[,]+∞)) |
87 | 84, 86 | ifclda 4495 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝑈, 𝐶, 0) ∈ (0[,]+∞)) |
88 | | itg2split.h |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, 𝐶, 0)) |
89 | 87, 88 | fmptd 6981 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐻:ℝ⟶(0[,]+∞)) |
90 | 89 | ffnd 6594 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐻 Fn ℝ) |
91 | 90 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → 𝐻 Fn ℝ) |
92 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → ℝ ∈
V) |
93 | | inidm 4153 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℝ
∩ ℝ) = ℝ |
94 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ ℝ) → (𝑓‘𝑦) = (𝑓‘𝑦)) |
95 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ ℝ) → (𝐻‘𝑦) = (𝐻‘𝑦)) |
96 | 82, 91, 92, 92, 93, 94, 95 | ofrfval 7534 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → (𝑓 ∘r ≤ 𝐻 ↔ ∀𝑦 ∈ ℝ (𝑓‘𝑦) ≤ (𝐻‘𝑦))) |
97 | 81, 96 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → ∀𝑦 ∈ ℝ (𝑓‘𝑦) ≤ (𝐻‘𝑦)) |
98 | 97 | r19.21bi 3133 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ ℝ) → (𝑓‘𝑦) ≤ (𝐻‘𝑦)) |
99 | 46, 98 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → (𝑓‘𝑦) ≤ (𝐻‘𝑦)) |
100 | 99 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝑈) → (𝑓‘𝑦) ≤ (𝐻‘𝑦)) |
101 | 46 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → 𝑦 ∈ ℝ) |
102 | | eldif 3897 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (ℝ ∖ 𝑈) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ 𝑈)) |
103 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥𝑦 |
104 | | nfmpt1 5182 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑥(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, 𝐶, 0)) |
105 | 88, 104 | nfcxfr 2905 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥𝐻 |
106 | 105, 103 | nffv 6777 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥(𝐻‘𝑦) |
107 | 106 | nfeq1 2922 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥(𝐻‘𝑦) = 0 |
108 | | fveqeq2 6776 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → ((𝐻‘𝑥) = 0 ↔ (𝐻‘𝑦) = 0)) |
109 | | eldif 3897 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (ℝ ∖ 𝑈) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝑈)) |
110 | 88 | fvmpt2i 6878 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ → (𝐻‘𝑥) = ( I ‘if(𝑥 ∈ 𝑈, 𝐶, 0))) |
111 | | iffalse 4469 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑥 ∈ 𝑈 → if(𝑥 ∈ 𝑈, 𝐶, 0) = 0) |
112 | 111 | fveq2d 6771 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑥 ∈ 𝑈 → ( I ‘if(𝑥 ∈ 𝑈, 𝐶, 0)) = ( I ‘0)) |
113 | | 0cn 10955 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℂ |
114 | | fvi 6837 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 ∈
ℂ → ( I ‘0) = 0) |
115 | 113, 114 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ( I
‘0) = 0 |
116 | 112, 115 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑥 ∈ 𝑈 → ( I ‘if(𝑥 ∈ 𝑈, 𝐶, 0)) = 0) |
117 | 110, 116 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℝ ∧ ¬
𝑥 ∈ 𝑈) → (𝐻‘𝑥) = 0) |
118 | 109, 117 | sylbi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (ℝ ∖ 𝑈) → (𝐻‘𝑥) = 0) |
119 | 103, 107,
108, 118 | vtoclgaf 3510 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (ℝ ∖ 𝑈) → (𝐻‘𝑦) = 0) |
120 | 102, 119 | sylbir 234 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℝ ∧ ¬
𝑦 ∈ 𝑈) → (𝐻‘𝑦) = 0) |
121 | 101, 120 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝑈) → (𝐻‘𝑦) = 0) |
122 | 100, 121 | breqtrd 5100 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝑈) → (𝑓‘𝑦) ≤ 0) |
123 | 80, 122 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ (¬ 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) → (𝑓‘𝑦) ≤ 0) |
124 | 123 | anassrs 468 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑓 ∘r
≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝐵) → (𝑓‘𝑦) ≤ 0) |
125 | 60 | adantl 482 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑓 ∘r
≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝐵) → if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0) = 0) |
126 | 124, 125 | breqtrrd 5102 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑓 ∘r
≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝐵) → (𝑓‘𝑦) ≤ if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0)) |
127 | 71, 126 | pm2.61dan 810 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ≤ if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0)) |
128 | | iffalse 4469 |
. . . . . . . . . . . . 13
⊢ (¬
𝑦 ∈ 𝐴 → if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) = 0) |
129 | 128 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) → if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) = 0) |
130 | 129 | oveq1d 7283 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) → (if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0)) = (0 + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0))) |
131 | | 0re 10965 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
132 | | ifcl 4505 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0) ∈ ℝ) |
133 | 48, 131, 132 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0) ∈ ℝ) |
134 | 133 | recnd 10991 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0) ∈ ℂ) |
135 | 134 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) → if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0) ∈ ℂ) |
136 | 135 | addid2d 11164 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) → (0 + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0)) = if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0)) |
137 | 130, 136 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) → (if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0)) = if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0)) |
138 | 127, 137 | breqtrrd 5102 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) ∧ ¬ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ≤ (if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0))) |
139 | 67, 138 | pm2.61dan 810 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → (𝑓‘𝑦) ≤ (if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0))) |
140 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
141 | | fveq2 6767 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑓‘𝑥) = (𝑓‘𝑦)) |
142 | 140, 141 | ifbieq1d 4484 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) = if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0)) |
143 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
144 | 143, 141 | ifbieq1d 4484 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) = if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0)) |
145 | 142, 144 | oveq12d 7286 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) + if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)) = (if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0))) |
146 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ ↦
(if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) + if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) + if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0))) |
147 | | ovex 7301 |
. . . . . . . . . 10
⊢ (if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0)) ∈ V |
148 | 145, 146,
147 | fvmpt 6868 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → ((𝑥 ∈ ℝ ↦
(if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) + if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)))‘𝑦) = (if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0))) |
149 | 101, 148 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → ((𝑥 ∈ ℝ ↦ (if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) + if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)))‘𝑦) = (if(𝑦 ∈ 𝐴, (𝑓‘𝑦), 0) + if(𝑦 ∈ 𝐵, (𝑓‘𝑦), 0))) |
150 | 139, 149 | breqtrrd 5102 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴 ∩ 𝐵))) → (𝑓‘𝑦) ≤ ((𝑥 ∈ ℝ ↦ (if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) + if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)))‘𝑦)) |
151 | 1, 27, 29, 43, 150 | itg1lea 24865 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫1‘𝑓)
≤ (∫1‘(𝑥 ∈ ℝ ↦ (if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) + if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0))))) |
152 | 41 | fveq2d 6771 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫1‘((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)))) = (∫1‘(𝑥 ∈ ℝ ↦
(if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) + if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0))))) |
153 | 8, 15 | itg1add 24854 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫1‘((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)))) = ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0))))) |
154 | 152, 153 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫1‘(𝑥
∈ ℝ ↦ (if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) + if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)))) = ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0))))) |
155 | 151, 154 | breqtrd 5100 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫1‘𝑓)
≤ ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0))))) |
156 | 19 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫2‘𝐹)
∈ ℝ) |
157 | 20 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫2‘𝐺)
∈ ℝ) |
158 | | ssun1 4106 |
. . . . . . . . . . . . . 14
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
159 | 158, 72 | sseqtrrid 3974 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
160 | 159 | sselda 3921 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
161 | 160 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
162 | 161, 84 | syldan 591 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
163 | 85 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) |
164 | 162, 163 | ifclda 4495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ (0[,]+∞)) |
165 | | itg2split.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) |
166 | 164, 165 | fmptd 6981 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
167 | 166 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → 𝐹:ℝ⟶(0[,]+∞)) |
168 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜑 |
169 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑓 ∈ dom
∫1 |
170 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑓 |
171 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥
∘r ≤ |
172 | 170, 171,
105 | nfbr 5121 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑓 ∘r ≤ 𝐻 |
173 | 169, 172 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑓 ∈ dom ∫1
∧ 𝑓 ∘r
≤ 𝐻) |
174 | 168, 173 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) |
175 | 5, 24 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → 𝐴 ⊆ ℝ) |
176 | 175 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
177 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ℝ
∈ V) |
178 | 32 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) ∈ V) |
179 | 87 | adantlr 712 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝑈, 𝐶, 0) ∈ (0[,]+∞)) |
180 | 44 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝑓:ℝ⟶ℝ) |
181 | 180 | feqmptd 6830 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓‘𝑥))) |
182 | 88 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, 𝐶, 0))) |
183 | 177, 178,
179, 181, 182 | ofrfval2 7545 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘r ≤ 𝐻 ↔ ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ if(𝑥 ∈ 𝑈, 𝐶, 0))) |
184 | 183 | biimpd 228 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘r ≤ 𝐻 → ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ if(𝑥 ∈ 𝑈, 𝐶, 0))) |
185 | 184 | impr 455 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → ∀𝑥 ∈ ℝ (𝑓‘𝑥) ≤ if(𝑥 ∈ 𝑈, 𝐶, 0)) |
186 | 185 | r19.21bi 3133 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ ℝ) → (𝑓‘𝑥) ≤ if(𝑥 ∈ 𝑈, 𝐶, 0)) |
187 | 176, 186 | syldan 591 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ≤ if(𝑥 ∈ 𝑈, 𝐶, 0)) |
188 | 160 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
189 | 188 | iftrued 4468 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝑈, 𝐶, 0) = 𝐶) |
190 | 187, 189 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ≤ 𝐶) |
191 | | iftrue 4466 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) = (𝑓‘𝑥)) |
192 | 191 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) = (𝑓‘𝑥)) |
193 | | iftrue 4466 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐶, 0) = 𝐶) |
194 | 193 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐶, 0) = 𝐶) |
195 | 190, 192,
194 | 3brtr4d 5106 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐴, 𝐶, 0)) |
196 | | 0le0 12062 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
0 |
197 | 196 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 ∈ 𝐴 → 0 ≤ 0) |
198 | | iffalse 4469 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) = 0) |
199 | | iffalse 4469 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐶, 0) = 0) |
200 | 197, 198,
199 | 3brtr4d 5106 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐴, 𝐶, 0)) |
201 | 200 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ ¬ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐴, 𝐶, 0)) |
202 | 195, 201 | pm2.61dan 810 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐴, 𝐶, 0)) |
203 | 202 | a1d 25 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → (𝑥 ∈ ℝ → if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐴, 𝐶, 0))) |
204 | 174, 203 | ralrimi 3140 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐴, 𝐶, 0)) |
205 | 165 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐶, 0))) |
206 | 31, 35, 164, 38, 205 | ofrfval2 7545 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐴, 𝐶, 0))) |
207 | 206 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐴, 𝐶, 0))) |
208 | 204, 207 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∘r ≤ 𝐹) |
209 | | itg2ub 24886 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∈ dom ∫1 ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0)) ∘r ≤ 𝐹) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (𝑓‘𝑥), 0))) ≤ (∫2‘𝐹)) |
210 | 167, 8, 208, 209 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (𝑓‘𝑥), 0))) ≤ (∫2‘𝐹)) |
211 | | ssun2 4107 |
. . . . . . . . . . . . . 14
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
212 | 211, 72 | sseqtrrid 3974 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
213 | 212 | sselda 3921 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
214 | 213 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
215 | 214, 84 | syldan 591 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
216 | 85 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝐵) → 0 ∈
(0[,]+∞)) |
217 | 215, 216 | ifclda 4495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐵, 𝐶, 0) ∈ (0[,]+∞)) |
218 | | itg2split.g |
. . . . . . . . 9
⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, 𝐶, 0)) |
219 | 217, 218 | fmptd 6981 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℝ⟶(0[,]+∞)) |
220 | 219 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → 𝐺:ℝ⟶(0[,]+∞)) |
221 | | mblss 24683 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ dom vol → 𝐵 ⊆
ℝ) |
222 | 12, 221 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → 𝐵 ⊆ ℝ) |
223 | 222 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ ℝ) |
224 | 223, 186 | syldan 591 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐵) → (𝑓‘𝑥) ≤ if(𝑥 ∈ 𝑈, 𝐶, 0)) |
225 | 213 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
226 | 225 | iftrued 4468 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝑈, 𝐶, 0) = 𝐶) |
227 | 224, 226 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐵) → (𝑓‘𝑥) ≤ 𝐶) |
228 | | iftrue 4466 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐵 → if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) = (𝑓‘𝑥)) |
229 | 228 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) = (𝑓‘𝑥)) |
230 | | iftrue 4466 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐵 → if(𝑥 ∈ 𝐵, 𝐶, 0) = 𝐶) |
231 | 230 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐵, 𝐶, 0) = 𝐶) |
232 | 227, 229,
231 | 3brtr4d 5106 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐵, 𝐶, 0)) |
233 | 196 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 ∈ 𝐵 → 0 ≤ 0) |
234 | | iffalse 4469 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 ∈ 𝐵 → if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) = 0) |
235 | | iffalse 4469 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 ∈ 𝐵 → if(𝑥 ∈ 𝐵, 𝐶, 0) = 0) |
236 | 233, 234,
235 | 3brtr4d 5106 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ 𝐵 → if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐵, 𝐶, 0)) |
237 | 236 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) ∧ ¬ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐵, 𝐶, 0)) |
238 | 232, 237 | pm2.61dan 810 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐵, 𝐶, 0)) |
239 | 238 | a1d 25 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → (𝑥 ∈ ℝ → if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐵, 𝐶, 0))) |
240 | 174, 239 | ralrimi 3140 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐵, 𝐶, 0)) |
241 | 218 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, 𝐶, 0))) |
242 | 31, 37, 217, 39, 241 | ofrfval2 7545 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)) ∘r ≤ 𝐺 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐵, 𝐶, 0))) |
243 | 242 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)) ∘r ≤ 𝐺 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0) ≤ if(𝑥 ∈ 𝐵, 𝐶, 0))) |
244 | 240, 243 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)) ∘r ≤ 𝐺) |
245 | | itg2ub 24886 |
. . . . . . 7
⊢ ((𝐺:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)) ∈ dom ∫1 ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)) ∘r ≤ 𝐺) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐵, (𝑓‘𝑥), 0))) ≤ (∫2‘𝐺)) |
246 | 220, 15, 244, 245 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐵, (𝑓‘𝑥), 0))) ≤ (∫2‘𝐺)) |
247 | 10, 17, 156, 157, 210, 246 | le2addd 11582 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝑓‘𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, (𝑓‘𝑥), 0)))) ≤ ((∫2‘𝐹) +
(∫2‘𝐺))) |
248 | 3, 18, 22, 155, 247 | letrd 11120 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻)) →
(∫1‘𝑓)
≤ ((∫2‘𝐹) + (∫2‘𝐺))) |
249 | 248 | expr 457 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘r ≤ 𝐻 →
(∫1‘𝑓)
≤ ((∫2‘𝐹) + (∫2‘𝐺)))) |
250 | 249 | ralrimiva 3113 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐻 →
(∫1‘𝑓)
≤ ((∫2‘𝐹) + (∫2‘𝐺)))) |
251 | 21 | rexrd 11013 |
. . 3
⊢ (𝜑 →
((∫2‘𝐹) + (∫2‘𝐺)) ∈
ℝ*) |
252 | | itg2leub 24887 |
. . 3
⊢ ((𝐻:ℝ⟶(0[,]+∞)
∧ ((∫2‘𝐹) + (∫2‘𝐺)) ∈ ℝ*)
→ ((∫2‘𝐻) ≤ ((∫2‘𝐹) +
(∫2‘𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐻 →
(∫1‘𝑓)
≤ ((∫2‘𝐹) + (∫2‘𝐺))))) |
253 | 89, 251, 252 | syl2anc 584 |
. 2
⊢ (𝜑 →
((∫2‘𝐻) ≤ ((∫2‘𝐹) +
(∫2‘𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐻 →
(∫1‘𝑓)
≤ ((∫2‘𝐹) + (∫2‘𝐺))))) |
254 | 250, 253 | mpbird 256 |
1
⊢ (𝜑 →
(∫2‘𝐻)
≤ ((∫2‘𝐹) + (∫2‘𝐺))) |