MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2splitlem Structured version   Visualization version   GIF version

Theorem itg2splitlem 23806
Description: Lemma for itg2split 23807. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2split.a (𝜑𝐴 ∈ dom vol)
itg2split.b (𝜑𝐵 ∈ dom vol)
itg2split.i (𝜑 → (vol*‘(𝐴𝐵)) = 0)
itg2split.u (𝜑𝑈 = (𝐴𝐵))
itg2split.c ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
itg2split.f 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
itg2split.g 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
itg2split.h 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
itg2split.sf (𝜑 → (∫2𝐹) ∈ ℝ)
itg2split.sg (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2splitlem (𝜑 → (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem itg2splitlem
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 787 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → 𝑓 ∈ dom ∫1)
2 itg1cl 23743 . . . . . 6 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
31, 2syl 17 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫1𝑓) ∈ ℝ)
4 itg2split.a . . . . . . . . 9 (𝜑𝐴 ∈ dom vol)
54adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → 𝐴 ∈ dom vol)
6 eqid 2765 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))
76i1fres 23763 . . . . . . . 8 ((𝑓 ∈ dom ∫1𝐴 ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∈ dom ∫1)
81, 5, 7syl2anc 579 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∈ dom ∫1)
9 itg1cl 23743 . . . . . . 7 ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) ∈ ℝ)
108, 9syl 17 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) ∈ ℝ)
11 itg2split.b . . . . . . . . 9 (𝜑𝐵 ∈ dom vol)
1211adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → 𝐵 ∈ dom vol)
13 eqid 2765 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))
1413i1fres 23763 . . . . . . . 8 ((𝑓 ∈ dom ∫1𝐵 ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∈ dom ∫1)
151, 12, 14syl2anc 579 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∈ dom ∫1)
16 itg1cl 23743 . . . . . . 7 ((𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) ∈ ℝ)
1715, 16syl 17 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) ∈ ℝ)
1810, 17readdcld 10323 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))) ∈ ℝ)
19 itg2split.sf . . . . . . 7 (𝜑 → (∫2𝐹) ∈ ℝ)
20 itg2split.sg . . . . . . 7 (𝜑 → (∫2𝐺) ∈ ℝ)
2119, 20readdcld 10323 . . . . . 6 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ)
2221adantr 472 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ)
23 inss1 3992 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
24 mblss 23589 . . . . . . . . . 10 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
254, 24syl 17 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
2623, 25syl5ss 3772 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ ℝ)
2726adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (𝐴𝐵) ⊆ ℝ)
28 itg2split.i . . . . . . . 8 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
2928adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (vol*‘(𝐴𝐵)) = 0)
30 reex 10280 . . . . . . . . . . 11 ℝ ∈ V
3130a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ V)
32 fvex 6388 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
33 c0ex 10287 . . . . . . . . . . . 12 0 ∈ V
3432, 33ifex 4291 . . . . . . . . . . 11 if(𝑥𝐴, (𝑓𝑥), 0) ∈ V
3534a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (𝑓𝑥), 0) ∈ V)
3632, 33ifex 4291 . . . . . . . . . . 11 if(𝑥𝐵, (𝑓𝑥), 0) ∈ V
3736a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐵, (𝑓𝑥), 0) ∈ V)
38 eqidd 2766 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)))
39 eqidd 2766 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))
4031, 35, 37, 38, 39offval2 7112 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0))))
4140adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0))))
428, 15i1fadd 23753 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) ∈ dom ∫1)
4341, 42eqeltrrd 2845 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0))) ∈ dom ∫1)
44 i1ff 23734 . . . . . . . . . . . . . 14 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
451, 44syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → 𝑓:ℝ⟶ℝ)
46 eldifi 3894 . . . . . . . . . . . . 13 (𝑦 ∈ (ℝ ∖ (𝐴𝐵)) → 𝑦 ∈ ℝ)
47 ffvelrn 6547 . . . . . . . . . . . . 13 ((𝑓:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ∈ ℝ)
4845, 46, 47syl2an 589 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑦) ∈ ℝ)
4948leidd 10848 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑦) ≤ (𝑓𝑦))
5049adantr 472 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → (𝑓𝑦) ≤ (𝑓𝑦))
51 iftrue 4249 . . . . . . . . . . . . 13 (𝑦𝐴 → if(𝑦𝐴, (𝑓𝑦), 0) = (𝑓𝑦))
5251adantl 473 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → if(𝑦𝐴, (𝑓𝑦), 0) = (𝑓𝑦))
53 eldifn 3895 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ℝ ∖ (𝐴𝐵)) → ¬ 𝑦 ∈ (𝐴𝐵))
5453adantl 473 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ 𝑦 ∈ (𝐴𝐵))
55 elin 3958 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
5654, 55sylnib 319 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ (𝑦𝐴𝑦𝐵))
57 imnan 388 . . . . . . . . . . . . . . 15 ((𝑦𝐴 → ¬ 𝑦𝐵) ↔ ¬ (𝑦𝐴𝑦𝐵))
5856, 57sylibr 225 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑦𝐴 → ¬ 𝑦𝐵))
5958imp 395 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → ¬ 𝑦𝐵)
60 iffalse 4252 . . . . . . . . . . . . 13 𝑦𝐵 → if(𝑦𝐵, (𝑓𝑦), 0) = 0)
6159, 60syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → if(𝑦𝐵, (𝑓𝑦), 0) = 0)
6252, 61oveq12d 6860 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)) = ((𝑓𝑦) + 0))
6348recnd 10322 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑦) ∈ ℂ)
6463adantr 472 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → (𝑓𝑦) ∈ ℂ)
6564addid1d 10490 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → ((𝑓𝑦) + 0) = (𝑓𝑦))
6662, 65eqtrd 2799 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)) = (𝑓𝑦))
6750, 66breqtrrd 4837 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑦𝐴) → (𝑓𝑦) ≤ (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)))
6849ad2antrr 717 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) ∧ 𝑦𝐵) → (𝑓𝑦) ≤ (𝑓𝑦))
69 iftrue 4249 . . . . . . . . . . . . 13 (𝑦𝐵 → if(𝑦𝐵, (𝑓𝑦), 0) = (𝑓𝑦))
7069adantl 473 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) ∧ 𝑦𝐵) → if(𝑦𝐵, (𝑓𝑦), 0) = (𝑓𝑦))
7168, 70breqtrrd 4837 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) ∧ 𝑦𝐵) → (𝑓𝑦) ≤ if(𝑦𝐵, (𝑓𝑦), 0))
72 itg2split.u . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑈 = (𝐴𝐵))
7372ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → 𝑈 = (𝐴𝐵))
7473eleq2d 2830 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑦𝑈𝑦 ∈ (𝐴𝐵)))
75 elun 3915 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
7674, 75syl6bb 278 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑦𝑈 ↔ (𝑦𝐴𝑦𝐵)))
7776notbid 309 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (¬ 𝑦𝑈 ↔ ¬ (𝑦𝐴𝑦𝐵)))
78 ioran 1006 . . . . . . . . . . . . . . . 16 (¬ (𝑦𝐴𝑦𝐵) ↔ (¬ 𝑦𝐴 ∧ ¬ 𝑦𝐵))
7977, 78syl6bb 278 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (¬ 𝑦𝑈 ↔ (¬ 𝑦𝐴 ∧ ¬ 𝑦𝐵)))
8079biimpar 469 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ (¬ 𝑦𝐴 ∧ ¬ 𝑦𝐵)) → ¬ 𝑦𝑈)
81 simprr 789 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → 𝑓𝑟𝐻)
8245ffnd 6224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → 𝑓 Fn ℝ)
83 itg2split.c . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
8483adantlr 706 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
85 0e0iccpnf 12487 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ (0[,]+∞)
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑈) → 0 ∈ (0[,]+∞))
8784, 86ifclda 4277 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
88 itg2split.h . . . . . . . . . . . . . . . . . . . . . . 23 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
8987, 88fmptd 6574 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐻:ℝ⟶(0[,]+∞))
9089ffnd 6224 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐻 Fn ℝ)
9190adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → 𝐻 Fn ℝ)
9230a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → ℝ ∈ V)
93 inidm 3982 . . . . . . . . . . . . . . . . . . . 20 (ℝ ∩ ℝ) = ℝ
94 eqidd 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) = (𝑓𝑦))
95 eqidd 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ ℝ) → (𝐻𝑦) = (𝐻𝑦))
9682, 91, 92, 92, 93, 94, 95ofrfval 7103 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (𝑓𝑟𝐻 ↔ ∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐻𝑦)))
9781, 96mpbid 223 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → ∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐻𝑦))
9897r19.21bi 3079 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ≤ (𝐻𝑦))
9946, 98sylan2 586 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑦) ≤ (𝐻𝑦))
10099adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝑈) → (𝑓𝑦) ≤ (𝐻𝑦))
10146adantl 473 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → 𝑦 ∈ ℝ)
102 eldif 3742 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ℝ ∖ 𝑈) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦𝑈))
103 nfcv 2907 . . . . . . . . . . . . . . . . . 18 𝑥𝑦
104 nfmpt1 4906 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
10588, 104nfcxfr 2905 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐻
106105, 103nffv 6385 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐻𝑦)
107106nfeq1 2921 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑦) = 0
108 fveqeq2 6384 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐻𝑥) = 0 ↔ (𝐻𝑦) = 0))
109 eldif 3742 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℝ ∖ 𝑈) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝑈))
11088fvmpt2i 6479 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ → (𝐻𝑥) = ( I ‘if(𝑥𝑈, 𝐶, 0)))
111 iffalse 4252 . . . . . . . . . . . . . . . . . . . . . 22 𝑥𝑈 → if(𝑥𝑈, 𝐶, 0) = 0)
112111fveq2d 6379 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑈 → ( I ‘if(𝑥𝑈, 𝐶, 0)) = ( I ‘0))
113 0cn 10285 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℂ
114 fvi 6444 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ ℂ → ( I ‘0) = 0)
115113, 114ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ( I ‘0) = 0
116112, 115syl6eq 2815 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑈 → ( I ‘if(𝑥𝑈, 𝐶, 0)) = 0)
117110, 116sylan9eq 2819 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ ¬ 𝑥𝑈) → (𝐻𝑥) = 0)
118109, 117sylbi 208 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℝ ∖ 𝑈) → (𝐻𝑥) = 0)
119103, 107, 108, 118vtoclgaf 3423 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ℝ ∖ 𝑈) → (𝐻𝑦) = 0)
120102, 119sylbir 226 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ ¬ 𝑦𝑈) → (𝐻𝑦) = 0)
121101, 120sylan 575 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝑈) → (𝐻𝑦) = 0)
122100, 121breqtrd 4835 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝑈) → (𝑓𝑦) ≤ 0)
12380, 122syldan 585 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ (¬ 𝑦𝐴 ∧ ¬ 𝑦𝐵)) → (𝑓𝑦) ≤ 0)
124123anassrs 459 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) ∧ ¬ 𝑦𝐵) → (𝑓𝑦) ≤ 0)
12560adantl 473 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) ∧ ¬ 𝑦𝐵) → if(𝑦𝐵, (𝑓𝑦), 0) = 0)
126124, 125breqtrrd 4837 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) ∧ ¬ 𝑦𝐵) → (𝑓𝑦) ≤ if(𝑦𝐵, (𝑓𝑦), 0))
12771, 126pm2.61dan 847 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → (𝑓𝑦) ≤ if(𝑦𝐵, (𝑓𝑦), 0))
128 iffalse 4252 . . . . . . . . . . . . 13 𝑦𝐴 → if(𝑦𝐴, (𝑓𝑦), 0) = 0)
129128adantl 473 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → if(𝑦𝐴, (𝑓𝑦), 0) = 0)
130129oveq1d 6857 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)) = (0 + if(𝑦𝐵, (𝑓𝑦), 0)))
131 0re 10295 . . . . . . . . . . . . . . 15 0 ∈ ℝ
132 ifcl 4287 . . . . . . . . . . . . . . 15 (((𝑓𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑦𝐵, (𝑓𝑦), 0) ∈ ℝ)
13348, 131, 132sylancl 580 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → if(𝑦𝐵, (𝑓𝑦), 0) ∈ ℝ)
134133recnd 10322 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → if(𝑦𝐵, (𝑓𝑦), 0) ∈ ℂ)
135134adantr 472 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → if(𝑦𝐵, (𝑓𝑦), 0) ∈ ℂ)
136135addid2d 10491 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → (0 + if(𝑦𝐵, (𝑓𝑦), 0)) = if(𝑦𝐵, (𝑓𝑦), 0))
137130, 136eqtrd 2799 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)) = if(𝑦𝐵, (𝑓𝑦), 0))
138127, 137breqtrrd 4837 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑦𝐴) → (𝑓𝑦) ≤ (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)))
13967, 138pm2.61dan 847 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑦) ≤ (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)))
140 eleq1w 2827 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
141 fveq2 6375 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
142140, 141ifbieq1d 4266 . . . . . . . . . . 11 (𝑥 = 𝑦 → if(𝑥𝐴, (𝑓𝑥), 0) = if(𝑦𝐴, (𝑓𝑦), 0))
143 eleq1w 2827 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
144143, 141ifbieq1d 4266 . . . . . . . . . . 11 (𝑥 = 𝑦 → if(𝑥𝐵, (𝑓𝑥), 0) = if(𝑦𝐵, (𝑓𝑦), 0))
145142, 144oveq12d 6860 . . . . . . . . . 10 (𝑥 = 𝑦 → (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)) = (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)))
146 eqid 2765 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))
147 ovex 6874 . . . . . . . . . 10 (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)) ∈ V
148145, 146, 147fvmpt 6471 . . . . . . . . 9 (𝑦 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))‘𝑦) = (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)))
149101, 148syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))‘𝑦) = (if(𝑦𝐴, (𝑓𝑦), 0) + if(𝑦𝐵, (𝑓𝑦), 0)))
150139, 149breqtrrd 4837 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑦) ≤ ((𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))‘𝑦))
1511, 27, 29, 43, 150itg1lea 23770 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫1𝑓) ≤ (∫1‘(𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))))
15241fveq2d 6379 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫1‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))) = (∫1‘(𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))))
1538, 15itg1add 23759 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫1‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))) = ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))))
154152, 153eqtr3d 2801 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫1‘(𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (𝑓𝑥), 0) + if(𝑥𝐵, (𝑓𝑥), 0)))) = ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))))
155151, 154breqtrd 4835 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫1𝑓) ≤ ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))))
15619adantr 472 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫2𝐹) ∈ ℝ)
15720adantr 472 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫2𝐺) ∈ ℝ)
158 ssun1 3938 . . . . . . . . . . . . . 14 𝐴 ⊆ (𝐴𝐵)
159158, 72syl5sseqr 3814 . . . . . . . . . . . . 13 (𝜑𝐴𝑈)
160159sselda 3761 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥𝑈)
161160adantlr 706 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝑈)
162161, 84syldan 585 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
16385a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
164162, 163ifclda 4277 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
165 itg2split.f . . . . . . . . 9 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
166164, 165fmptd 6574 . . . . . . . 8 (𝜑𝐹:ℝ⟶(0[,]+∞))
167166adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → 𝐹:ℝ⟶(0[,]+∞))
168 nfv 2009 . . . . . . . . . 10 𝑥𝜑
169 nfv 2009 . . . . . . . . . . 11 𝑥 𝑓 ∈ dom ∫1
170 nfcv 2907 . . . . . . . . . . . 12 𝑥𝑓
171 nfcv 2907 . . . . . . . . . . . 12 𝑥𝑟
172170, 171, 105nfbr 4856 . . . . . . . . . . 11 𝑥 𝑓𝑟𝐻
173169, 172nfan 1998 . . . . . . . . . 10 𝑥(𝑓 ∈ dom ∫1𝑓𝑟𝐻)
174168, 173nfan 1998 . . . . . . . . 9 𝑥(𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻))
1755, 24syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → 𝐴 ⊆ ℝ)
176175sselda 3761 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
17730a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → ℝ ∈ V)
17832a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ V)
17987adantlr 706 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
18044adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 ∈ dom ∫1) → 𝑓:ℝ⟶ℝ)
181180feqmptd 6438 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
18288a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0)))
183177, 178, 179, 181, 182ofrfval2 7113 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → (𝑓𝑟𝐻 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝑈, 𝐶, 0)))
184183biimpd 220 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ dom ∫1) → (𝑓𝑟𝐻 → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝑈, 𝐶, 0)))
185184impr 446 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝑈, 𝐶, 0))
186185r19.21bi 3079 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ≤ if(𝑥𝑈, 𝐶, 0))
187176, 186syldan 585 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝑈, 𝐶, 0))
188160adantlr 706 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐴) → 𝑥𝑈)
189188iftrued 4251 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = 𝐶)
190187, 189breqtrd 4835 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ 𝐶)
191 iftrue 4249 . . . . . . . . . . . . 13 (𝑥𝐴 → if(𝑥𝐴, (𝑓𝑥), 0) = (𝑓𝑥))
192191adantl 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐴) → if(𝑥𝐴, (𝑓𝑥), 0) = (𝑓𝑥))
193 iftrue 4249 . . . . . . . . . . . . 13 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
194193adantl 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 𝐶)
195190, 192, 1943brtr4d 4841 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐴) → if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0))
196 0le0 11380 . . . . . . . . . . . . . 14 0 ≤ 0
197196a1i 11 . . . . . . . . . . . . 13 𝑥𝐴 → 0 ≤ 0)
198 iffalse 4252 . . . . . . . . . . . . 13 𝑥𝐴 → if(𝑥𝐴, (𝑓𝑥), 0) = 0)
199 iffalse 4252 . . . . . . . . . . . . 13 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
200197, 198, 1993brtr4d 4841 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0))
201200adantl 473 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0))
202195, 201pm2.61dan 847 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0))
203202a1d 25 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (𝑥 ∈ ℝ → if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0)))
204174, 203ralrimi 3104 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → ∀𝑥 ∈ ℝ if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0))
205165a1i 11 . . . . . . . . . 10 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
20631, 35, 164, 38, 205ofrfval2 7113 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘𝑟𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0)))
207206adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘𝑟𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐴, (𝑓𝑥), 0) ≤ if(𝑥𝐴, 𝐶, 0)))
208204, 207mpbird 248 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘𝑟𝐹)
209 itg2ub 23791 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0)) ∘𝑟𝐹) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) ≤ (∫2𝐹))
210167, 8, 208, 209syl3anc 1490 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) ≤ (∫2𝐹))
211 ssun2 3939 . . . . . . . . . . . . . 14 𝐵 ⊆ (𝐴𝐵)
212211, 72syl5sseqr 3814 . . . . . . . . . . . . 13 (𝜑𝐵𝑈)
213212sselda 3761 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → 𝑥𝑈)
214213adantlr 706 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥𝑈)
215214, 84syldan 585 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
21685a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
217215, 216ifclda 4277 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
218 itg2split.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
219217, 218fmptd 6574 . . . . . . . 8 (𝜑𝐺:ℝ⟶(0[,]+∞))
220219adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → 𝐺:ℝ⟶(0[,]+∞))
221 mblss 23589 . . . . . . . . . . . . . . . 16 (𝐵 ∈ dom vol → 𝐵 ⊆ ℝ)
22212, 221syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → 𝐵 ⊆ ℝ)
223222sselda 3761 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐵) → 𝑥 ∈ ℝ)
224223, 186syldan 585 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐵) → (𝑓𝑥) ≤ if(𝑥𝑈, 𝐶, 0))
225213adantlr 706 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐵) → 𝑥𝑈)
226225iftrued 4251 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐵) → if(𝑥𝑈, 𝐶, 0) = 𝐶)
227224, 226breqtrd 4835 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐵) → (𝑓𝑥) ≤ 𝐶)
228 iftrue 4249 . . . . . . . . . . . . 13 (𝑥𝐵 → if(𝑥𝐵, (𝑓𝑥), 0) = (𝑓𝑥))
229228adantl 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐵) → if(𝑥𝐵, (𝑓𝑥), 0) = (𝑓𝑥))
230 iftrue 4249 . . . . . . . . . . . . 13 (𝑥𝐵 → if(𝑥𝐵, 𝐶, 0) = 𝐶)
231230adantl 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐵) → if(𝑥𝐵, 𝐶, 0) = 𝐶)
232227, 229, 2313brtr4d 4841 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ 𝑥𝐵) → if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0))
233196a1i 11 . . . . . . . . . . . . 13 𝑥𝐵 → 0 ≤ 0)
234 iffalse 4252 . . . . . . . . . . . . 13 𝑥𝐵 → if(𝑥𝐵, (𝑓𝑥), 0) = 0)
235 iffalse 4252 . . . . . . . . . . . . 13 𝑥𝐵 → if(𝑥𝐵, 𝐶, 0) = 0)
236233, 234, 2353brtr4d 4841 . . . . . . . . . . . 12 𝑥𝐵 → if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0))
237236adantl 473 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) ∧ ¬ 𝑥𝐵) → if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0))
238232, 237pm2.61dan 847 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0))
239238a1d 25 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (𝑥 ∈ ℝ → if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0)))
240174, 239ralrimi 3104 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → ∀𝑥 ∈ ℝ if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0))
241218a1i 11 . . . . . . . . . 10 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0)))
24231, 37, 217, 39, 241ofrfval2 7113 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∘𝑟𝐺 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0)))
243242adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∘𝑟𝐺 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐵, (𝑓𝑥), 0) ≤ if(𝑥𝐵, 𝐶, 0)))
244240, 243mpbird 248 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∘𝑟𝐺)
245 itg2ub 23791 . . . . . . 7 ((𝐺:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)) ∘𝑟𝐺) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) ≤ (∫2𝐺))
246220, 15, 244, 245syl3anc 1490 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0))) ≤ (∫2𝐺))
24710, 17, 156, 157, 210, 246le2addd 10900 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → ((∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝑓𝑥), 0))) + (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, (𝑓𝑥), 0)))) ≤ ((∫2𝐹) + (∫2𝐺)))
2483, 18, 22, 155, 247letrd 10448 . . . 4 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐻)) → (∫1𝑓) ≤ ((∫2𝐹) + (∫2𝐺)))
249248expr 448 . . 3 ((𝜑𝑓 ∈ dom ∫1) → (𝑓𝑟𝐻 → (∫1𝑓) ≤ ((∫2𝐹) + (∫2𝐺))))
250249ralrimiva 3113 . 2 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐻 → (∫1𝑓) ≤ ((∫2𝐹) + (∫2𝐺))))
25121rexrd 10343 . . 3 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*)
252 itg2leub 23792 . . 3 ((𝐻:ℝ⟶(0[,]+∞) ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*) → ((∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐻 → (∫1𝑓) ≤ ((∫2𝐹) + (∫2𝐺)))))
25389, 251, 252syl2anc 579 . 2 (𝜑 → ((∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐻 → (∫1𝑓) ≤ ((∫2𝐹) + (∫2𝐺)))))
254250, 253mpbird 248 1 (𝜑 → (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  cdif 3729  cun 3730  cin 3731  wss 3732  ifcif 4243   class class class wbr 4809  cmpt 4888   I cid 5184  dom cdm 5277   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑓 cof 7093  𝑟 cofr 7094  cc 10187  cr 10188  0cc0 10189   + caddc 10192  +∞cpnf 10325  *cxr 10327  cle 10329  [,]cicc 12380  vol*covol 23520  volcvol 23521  1citg1 23673  2citg2 23674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-rest 16349  df-topgen 16370  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-top 20978  df-topon 20995  df-bases 21030  df-cmp 21470  df-ovol 23522  df-vol 23523  df-mbf 23677  df-itg1 23678  df-itg2 23679
This theorem is referenced by:  itg2split  23807
  Copyright terms: Public domain W3C validator