MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumss Structured version   Visualization version   GIF version

Theorem sumss 15649
Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
sumss.1 (𝜑𝐴𝐵)
sumss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
sumss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
sumss.4 (𝜑𝐵 ⊆ (ℤ𝑀))
Assertion
Ref Expression
sumss (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑘,𝑀
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 simpr 484 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 sumss.1 . . . . . . 7 (𝜑𝐴𝐵)
4 sumss.4 . . . . . . 7 (𝜑𝐵 ⊆ (ℤ𝑀))
53, 4sstrd 3948 . . . . . 6 (𝜑𝐴 ⊆ (ℤ𝑀))
65adantr 480 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
7 nfcv 2891 . . . . . . 7 𝑘𝑚
8 nffvmpt1 6837 . . . . . . . 8 𝑘((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚)
9 nfv 1914 . . . . . . . . 9 𝑘 𝑚𝐴
10 nffvmpt1 6837 . . . . . . . . 9 𝑘((𝑘𝐴𝐶)‘𝑚)
11 nfcv 2891 . . . . . . . . 9 𝑘0
129, 10, 11nfif 4509 . . . . . . . 8 𝑘if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0)
138, 12nfeq 2905 . . . . . . 7 𝑘((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0)
14 fveq2 6826 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚))
15 eleq1w 2811 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
16 fveq2 6826 . . . . . . . . 9 (𝑘 = 𝑚 → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐴𝐶)‘𝑚))
1715, 16ifbieq1d 4503 . . . . . . . 8 (𝑘 = 𝑚 → if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0))
1814, 17eqeq12d 2745 . . . . . . 7 (𝑘 = 𝑚 → (((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) ↔ ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0)))
19 eqid 2729 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))
2019fvmpt2i 6944 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = ( I ‘if(𝑘𝐴, 𝐶, 0)))
21 iftrue 4484 . . . . . . . . . . 11 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
2221fveq2d 6830 . . . . . . . . . 10 (𝑘𝐴 → ( I ‘if(𝑘𝐴, 𝐶, 0)) = ( I ‘𝐶))
2320, 22sylan9eq 2784 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = ( I ‘𝐶))
24 iftrue 4484 . . . . . . . . . . 11 (𝑘𝐴 → if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) = ((𝑘𝐴𝐶)‘𝑘))
25 eqid 2729 . . . . . . . . . . . 12 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
2625fvmpt2i 6944 . . . . . . . . . . 11 (𝑘𝐴 → ((𝑘𝐴𝐶)‘𝑘) = ( I ‘𝐶))
2724, 26eqtrd 2764 . . . . . . . . . 10 (𝑘𝐴 → if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) = ( I ‘𝐶))
2827adantl 481 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ 𝑘𝐴) → if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) = ( I ‘𝐶))
2923, 28eqtr4d 2767 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0))
30 iffalse 4487 . . . . . . . . . . . 12 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 0)
3130fveq2d 6830 . . . . . . . . . . 11 𝑘𝐴 → ( I ‘if(𝑘𝐴, 𝐶, 0)) = ( I ‘0))
32 0z 12500 . . . . . . . . . . . 12 0 ∈ ℤ
33 fvi 6903 . . . . . . . . . . . 12 (0 ∈ ℤ → ( I ‘0) = 0)
3432, 33ax-mp 5 . . . . . . . . . . 11 ( I ‘0) = 0
3531, 34eqtrdi 2780 . . . . . . . . . 10 𝑘𝐴 → ( I ‘if(𝑘𝐴, 𝐶, 0)) = 0)
3620, 35sylan9eq 2784 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ¬ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = 0)
37 iffalse 4487 . . . . . . . . . 10 𝑘𝐴 → if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) = 0)
3837adantl 481 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0) = 0)
3936, 38eqtr4d 2767 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ ¬ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0))
4029, 39pm2.61dan 812 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐴, ((𝑘𝐴𝐶)‘𝑘), 0))
417, 13, 18, 40vtoclgaf 3533 . . . . . 6 (𝑚 ∈ (ℤ𝑀) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0))
4241adantl 481 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0))
43 sumss.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
4443fmpttd 7053 . . . . . . 7 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
4544adantr 480 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (𝑘𝐴𝐶):𝐴⟶ℂ)
4645ffvelcdmda 7022 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
471, 2, 6, 42, 46zsum 15643 . . . 4 ((𝜑𝑀 ∈ ℤ) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
484adantr 480 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝐵 ⊆ (ℤ𝑀))
49 nfv 1914 . . . . . . . . 9 𝑘𝜑
50 nfv 1914 . . . . . . . . . . 11 𝑘 𝑚𝐵
51 nffvmpt1 6837 . . . . . . . . . . 11 𝑘((𝑘𝐵𝐶)‘𝑚)
5250, 51, 11nfif 4509 . . . . . . . . . 10 𝑘if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0)
538, 52nfeq 2905 . . . . . . . . 9 𝑘((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0)
5449, 53nfim 1896 . . . . . . . 8 𝑘(𝜑 → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
55 eleq1w 2811 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑘𝐵𝑚𝐵))
56 fveq2 6826 . . . . . . . . . . 11 (𝑘 = 𝑚 → ((𝑘𝐵𝐶)‘𝑘) = ((𝑘𝐵𝐶)‘𝑚))
5755, 56ifbieq1d 4503 . . . . . . . . . 10 (𝑘 = 𝑚 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
5814, 57eqeq12d 2745 . . . . . . . . 9 (𝑘 = 𝑚 → (((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) ↔ ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0)))
5958imbi2d 340 . . . . . . . 8 (𝑘 = 𝑚 → ((𝜑 → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0)) ↔ (𝜑 → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))))
6023adantll 714 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = ( I ‘𝐶))
613adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴𝐵)
6261sselda 3937 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝑘𝐵)
63 iftrue 4484 . . . . . . . . . . . . 13 (𝑘𝐵 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = ((𝑘𝐵𝐶)‘𝑘))
64 eqid 2729 . . . . . . . . . . . . . 14 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
6564fvmpt2i 6944 . . . . . . . . . . . . 13 (𝑘𝐵 → ((𝑘𝐵𝐶)‘𝑘) = ( I ‘𝐶))
6663, 65eqtrd 2764 . . . . . . . . . . . 12 (𝑘𝐵 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = ( I ‘𝐶))
6762, 66syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = ( I ‘𝐶))
6860, 67eqtr4d 2767 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0))
6936adantll 714 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = 0)
7066ad2antrl 728 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = ( I ‘𝐶))
71 eldif 3915 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
72 sumss.3 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
7372fveq2d 6830 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝐵𝐴)) → ( I ‘𝐶) = ( I ‘0))
74 0cn 11126 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℂ
75 fvi 6903 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℂ → ( I ‘0) = 0)
7674, 75ax-mp 5 . . . . . . . . . . . . . . . . . 18 ( I ‘0) = 0
7773, 76eqtrdi 2780 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵𝐴)) → ( I ‘𝐶) = 0)
7871, 77sylan2br 595 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → ( I ‘𝐶) = 0)
7970, 78eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0)
8079expr 456 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0))
81 iffalse 4487 . . . . . . . . . . . . . . . 16 𝑘𝐵 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0)
8281adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝑘𝐵) → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0)
8382a1d 25 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑘𝐵) → (¬ 𝑘𝐴 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0))
8480, 83pm2.61dan 812 . . . . . . . . . . . . 13 (𝜑 → (¬ 𝑘𝐴 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0))
8584adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → (¬ 𝑘𝐴 → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0))
8685imp 406 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0) = 0)
8769, 86eqtr4d 2767 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0))
8868, 87pm2.61dan 812 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0))
8988expcom 413 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → (𝜑 → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑘) = if(𝑘𝐵, ((𝑘𝐵𝐶)‘𝑘), 0)))
907, 54, 59, 89vtoclgaf 3533 . . . . . . 7 (𝑚 ∈ (ℤ𝑀) → (𝜑 → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0)))
9190impcom 407 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
9291adantlr 715 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
9343ex 412 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
9493adantr 480 . . . . . . . . 9 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
9572, 74eqeltrdi 2836 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
9671, 95sylan2br 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
9796expr 456 . . . . . . . . 9 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
9894, 97pm2.61d 179 . . . . . . . 8 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
9998fmpttd 7053 . . . . . . 7 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
10099adantr 480 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (𝑘𝐵𝐶):𝐵⟶ℂ)
101100ffvelcdmda 7022 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1021, 2, 48, 92, 101zsum 15643 . . . 4 ((𝜑𝑀 ∈ ℤ) → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
10347, 102eqtr4d 2767 . . 3 ((𝜑𝑀 ∈ ℤ) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
104 sumfc 15634 . . 3 Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶
105 sumfc 15634 . . 3 Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶
106103, 104, 1053eqtr3g 2787 . 2 ((𝜑𝑀 ∈ ℤ) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
1073adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴𝐵)
108 uzf 12756 . . . . . . . . . . . 12 :ℤ⟶𝒫 ℤ
109108fdmi 6667 . . . . . . . . . . 11 dom ℤ = ℤ
110109eleq2i 2820 . . . . . . . . . 10 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
111 ndmfv 6859 . . . . . . . . . 10 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
112110, 111sylnbir 331 . . . . . . . . 9 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
113112sseq2d 3970 . . . . . . . 8 𝑀 ∈ ℤ → (𝐵 ⊆ (ℤ𝑀) ↔ 𝐵 ⊆ ∅))
1144, 113imbitrid 244 . . . . . . 7 𝑀 ∈ ℤ → (𝜑𝐵 ⊆ ∅))
115114impcom 407 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 ⊆ ∅)
116107, 115sstrd 3948 . . . . 5 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
117 ss0 4355 . . . . 5 (𝐴 ⊆ ∅ → 𝐴 = ∅)
118116, 117syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 = ∅)
119 ss0 4355 . . . . 5 (𝐵 ⊆ ∅ → 𝐵 = ∅)
120115, 119syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 = ∅)
121118, 120eqtr4d 2767 . . 3 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 = 𝐵)
122121sumeq1d 15625 . 2 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
123106, 122pm2.61dan 812 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3902  wss 3905  c0 4286  ifcif 4478  𝒫 cpw 4553  cmpt 5176   I cid 5517  dom cdm 5623  wf 6482  cfv 6486  cc 11026  0cc0 11028   + caddc 11031  cz 12489  cuz 12753  seqcseq 13926  cli 15409  Σcsu 15611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612
This theorem is referenced by:  fsumss  15650  sumss2  15651  binomlem  15754  eulerpartlemsv2  34325  eulerpartlemsv3  34328  eulerpartlemv  34331  eulerpartlemb  34335
  Copyright terms: Public domain W3C validator