Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
2 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) |
3 | | sumss.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
4 | | sumss.4 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆ (ℤ≥‘𝑀)) |
5 | 3, 4 | sstrd 3931 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
6 | 5 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
7 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑘𝑚 |
8 | | nffvmpt1 6785 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) |
9 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑘 𝑚 ∈ 𝐴 |
10 | | nffvmpt1 6785 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) |
11 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑘0 |
12 | 9, 10, 11 | nfif 4489 |
. . . . . . . 8
⊢
Ⅎ𝑘if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 0) |
13 | 8, 12 | nfeq 2920 |
. . . . . . 7
⊢
Ⅎ𝑘((𝑘 ∈
(ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 0) |
14 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚)) |
15 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → (𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴)) |
16 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) |
17 | 15, 16 | ifbieq1d 4483 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → if(𝑘 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘), 0) = if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 0)) |
18 | 14, 17 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → (((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = if(𝑘 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘), 0) ↔ ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 0))) |
19 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0)) = (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0)) |
20 | 19 | fvmpt2i 6885 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 0))) |
21 | | iftrue 4465 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐶, 0) = 𝐶) |
22 | 21 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐴 → ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 0)) = ( I ‘𝐶)) |
23 | 20, 22 | sylan9eq 2798 |
. . . . . . . . 9
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = ( I ‘𝐶)) |
24 | | iftrue 4465 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘), 0) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) |
25 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) |
26 | 25 | fvmpt2i 6885 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = ( I ‘𝐶)) |
27 | 24, 26 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘), 0) = ( I ‘𝐶)) |
28 | 27 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘), 0) = ( I ‘𝐶)) |
29 | 23, 28 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = if(𝑘 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘), 0)) |
30 | | iffalse 4468 |
. . . . . . . . . . . 12
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐶, 0) = 0) |
31 | 30 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (¬
𝑘 ∈ 𝐴 → ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 0)) = ( I ‘0)) |
32 | | 0z 12330 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
33 | | fvi 6844 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℤ → ( I ‘0) = 0) |
34 | 32, 33 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ( I
‘0) = 0 |
35 | 31, 34 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (¬
𝑘 ∈ 𝐴 → ( I ‘if(𝑘 ∈ 𝐴, 𝐶, 0)) = 0) |
36 | 20, 35 | sylan9eq 2798 |
. . . . . . . . 9
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ¬ 𝑘 ∈ 𝐴) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = 0) |
37 | | iffalse 4468 |
. . . . . . . . . 10
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘), 0) = 0) |
38 | 37 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ¬ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘), 0) = 0) |
39 | 36, 38 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ¬ 𝑘 ∈ 𝐴) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = if(𝑘 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘), 0)) |
40 | 29, 39 | pm2.61dan 810 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = if(𝑘 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘), 0)) |
41 | 7, 13, 18, 40 | vtoclgaf 3512 |
. . . . . 6
⊢ (𝑚 ∈
(ℤ≥‘𝑀) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 0)) |
42 | 41 | adantl 482 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 0)) |
43 | | sumss.2 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
44 | 43 | fmpttd 6989 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
45 | 44 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
46 | 45 | ffvelrnda 6961 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) ∈ ℂ) |
47 | 1, 2, 6, 42, 46 | zsum 15430 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))))) |
48 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → 𝐵 ⊆ (ℤ≥‘𝑀)) |
49 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝜑 |
50 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑚 ∈ 𝐵 |
51 | | nffvmpt1 6785 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) |
52 | 50, 51, 11 | nfif 4489 |
. . . . . . . . . 10
⊢
Ⅎ𝑘if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0) |
53 | 8, 52 | nfeq 2920 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝑘 ∈
(ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0) |
54 | 49, 53 | nfim 1899 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝜑 → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0)) |
55 | | eleq1w 2821 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (𝑘 ∈ 𝐵 ↔ 𝑚 ∈ 𝐵)) |
56 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
57 | 55, 56 | ifbieq1d 4483 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0)) |
58 | 14, 57 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → (((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) ↔ ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0))) |
59 | 58 | imbi2d 341 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → ((𝜑 → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0)) ↔ (𝜑 → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0)))) |
60 | 23 | adantll 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = ( I ‘𝐶)) |
61 | 3 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ⊆ 𝐵) |
62 | 61 | sselda 3921 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐵) |
63 | | iftrue 4465 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝐵 → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘)) |
64 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ 𝐶) |
65 | 64 | fvmpt2i 6885 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝐵 → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘) = ( I ‘𝐶)) |
66 | 63, 65 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝐵 → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = ( I ‘𝐶)) |
67 | 62, 66 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = ( I ‘𝐶)) |
68 | 60, 67 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0)) |
69 | 36 | adantll 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑘 ∈ 𝐴) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = 0) |
70 | 66 | ad2antrl 725 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = ( I ‘𝐶)) |
71 | | eldif 3897 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝐵 ∖ 𝐴) ↔ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) |
72 | | sumss.3 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
73 | 72 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → ( I ‘𝐶) = ( I ‘0)) |
74 | | 0cn 10967 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℂ |
75 | | fvi 6844 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 ∈
ℂ → ( I ‘0) = 0) |
76 | 74, 75 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ ( I
‘0) = 0 |
77 | 73, 76 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → ( I ‘𝐶) = 0) |
78 | 71, 77 | sylan2br 595 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) → ( I ‘𝐶) = 0) |
79 | 70, 78 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = 0) |
80 | 79 | expr 457 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (¬ 𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = 0)) |
81 | | iffalse 4468 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 ∈ 𝐵 → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = 0) |
82 | 81 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = 0) |
83 | 82 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝑘 ∈ 𝐵) → (¬ 𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = 0)) |
84 | 80, 83 | pm2.61dan 810 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (¬ 𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = 0)) |
85 | 84 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (¬ 𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = 0)) |
86 | 85 | imp 407 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0) = 0) |
87 | 69, 86 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑘 ∈ 𝐴) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0)) |
88 | 68, 87 | pm2.61dan 810 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0)) |
89 | 88 | expcom 414 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑘) = if(𝑘 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑘), 0))) |
90 | 7, 54, 59, 89 | vtoclgaf 3512 |
. . . . . . 7
⊢ (𝑚 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0))) |
91 | 90 | impcom 408 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0)) |
92 | 91 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0)) |
93 | 43 | ex 413 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
94 | 93 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
95 | 72, 74 | eqeltrdi 2847 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ ℂ) |
96 | 71, 95 | sylan2br 595 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) → 𝐶 ∈ ℂ) |
97 | 96 | expr 457 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
98 | 94, 97 | pm2.61d 179 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
99 | 98 | fmpttd 6989 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℂ) |
100 | 99 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℂ) |
101 | 100 | ffvelrnda 6961 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 ∈ ℤ) ∧ 𝑚 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) ∈ ℂ) |
102 | 1, 2, 48, 92, 101 | zsum 15430 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))))) |
103 | 47, 102 | eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
104 | | sumfc 15421 |
. . 3
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐶 |
105 | | sumfc 15421 |
. . 3
⊢
Σ𝑚 ∈
𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐵 𝐶 |
106 | 103, 104,
105 | 3eqtr3g 2801 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
107 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ 𝐵) |
108 | | uzf 12585 |
. . . . . . . . . . . 12
⊢
ℤ≥:ℤ⟶𝒫 ℤ |
109 | 108 | fdmi 6612 |
. . . . . . . . . . 11
⊢ dom
ℤ≥ = ℤ |
110 | 109 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑀 ∈ dom
ℤ≥ ↔ 𝑀 ∈ ℤ) |
111 | | ndmfv 6804 |
. . . . . . . . . 10
⊢ (¬
𝑀 ∈ dom
ℤ≥ → (ℤ≥‘𝑀) = ∅) |
112 | 110, 111 | sylnbir 331 |
. . . . . . . . 9
⊢ (¬
𝑀 ∈ ℤ →
(ℤ≥‘𝑀) = ∅) |
113 | 112 | sseq2d 3953 |
. . . . . . . 8
⊢ (¬
𝑀 ∈ ℤ →
(𝐵 ⊆
(ℤ≥‘𝑀) ↔ 𝐵 ⊆ ∅)) |
114 | 4, 113 | syl5ib 243 |
. . . . . . 7
⊢ (¬
𝑀 ∈ ℤ →
(𝜑 → 𝐵 ⊆ ∅)) |
115 | 114 | impcom 408 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 ⊆ ∅) |
116 | 107, 115 | sstrd 3931 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅) |
117 | | ss0 4332 |
. . . . 5
⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
118 | 116, 117 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 = ∅) |
119 | | ss0 4332 |
. . . . 5
⊢ (𝐵 ⊆ ∅ → 𝐵 = ∅) |
120 | 115, 119 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 = ∅) |
121 | 118, 120 | eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 = 𝐵) |
122 | 121 | sumeq1d 15413 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
123 | 106, 122 | pm2.61dan 810 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |