Step | Hyp | Ref
| Expression |
1 | | mptrcl.1 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
2 | 1 | dmmptss 6144 |
. . . 4
⊢ dom 𝐹 ⊆ 𝐴 |
3 | 2 | sseli 3917 |
. . 3
⊢ (𝐷 ∈ dom 𝐹 → 𝐷 ∈ 𝐴) |
4 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑦 = 𝐷 → (𝐹‘𝑦) = (𝐹‘𝐷)) |
5 | 4 | sseq1d 3952 |
. . . . . 6
⊢ (𝑦 = 𝐷 → ((𝐹‘𝑦) ⊆ 𝐶 ↔ (𝐹‘𝐷) ⊆ 𝐶)) |
6 | 5 | imbi2d 341 |
. . . . 5
⊢ (𝑦 = 𝐷 → ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝐷) ⊆ 𝐶))) |
7 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑥𝑦 |
8 | | nfra1 3144 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 |
9 | | nfmpt1 5182 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
10 | 1, 9 | nfcxfr 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐹 |
11 | 10, 7 | nffv 6784 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐹‘𝑦) |
12 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐶 |
13 | 11, 12 | nfss 3913 |
. . . . . . 7
⊢
Ⅎ𝑥(𝐹‘𝑦) ⊆ 𝐶 |
14 | 8, 13 | nfim 1899 |
. . . . . 6
⊢
Ⅎ𝑥(∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶) |
15 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
16 | 15 | sseq1d 3952 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) ⊆ 𝐶 ↔ (𝐹‘𝑦) ⊆ 𝐶)) |
17 | 16 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑥) ⊆ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶))) |
18 | 1 | dmmpt 6143 |
. . . . . . . . . . 11
⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
19 | 18 | rabeq2i 3422 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom 𝐹 ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)) |
20 | 1 | fvmpt2 6886 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
21 | | eqimss 3977 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑥) = 𝐵 → (𝐹‘𝑥) ⊆ 𝐵) |
22 | 20, 21 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) ⊆ 𝐵) |
23 | 19, 22 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) ⊆ 𝐵) |
24 | | ndmfv 6804 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) = ∅) |
25 | | 0ss 4330 |
. . . . . . . . . 10
⊢ ∅
⊆ 𝐵 |
26 | 24, 25 | eqsstrdi 3975 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) ⊆ 𝐵) |
27 | 23, 26 | pm2.61i 182 |
. . . . . . . 8
⊢ (𝐹‘𝑥) ⊆ 𝐵 |
28 | | rsp 3131 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 𝐵 ⊆ 𝐶 → (𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶)) |
29 | 28 | impcom 408 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → 𝐵 ⊆ 𝐶) |
30 | 27, 29 | sstrid 3932 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → (𝐹‘𝑥) ⊆ 𝐶) |
31 | 30 | ex 413 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑥) ⊆ 𝐶)) |
32 | 7, 14, 17, 31 | vtoclgaf 3512 |
. . . . 5
⊢ (𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝑦) ⊆ 𝐶)) |
33 | 6, 32 | vtoclga 3513 |
. . . 4
⊢ (𝐷 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝐷) ⊆ 𝐶)) |
34 | 33 | impcom 408 |
. . 3
⊢
((∀𝑥 ∈
𝐴 𝐵 ⊆ 𝐶 ∧ 𝐷 ∈ 𝐴) → (𝐹‘𝐷) ⊆ 𝐶) |
35 | 3, 34 | sylan2 593 |
. 2
⊢
((∀𝑥 ∈
𝐴 𝐵 ⊆ 𝐶 ∧ 𝐷 ∈ dom 𝐹) → (𝐹‘𝐷) ⊆ 𝐶) |
36 | | ndmfv 6804 |
. . . 4
⊢ (¬
𝐷 ∈ dom 𝐹 → (𝐹‘𝐷) = ∅) |
37 | 36 | adantl 482 |
. . 3
⊢
((∀𝑥 ∈
𝐴 𝐵 ⊆ 𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹) → (𝐹‘𝐷) = ∅) |
38 | | 0ss 4330 |
. . 3
⊢ ∅
⊆ 𝐶 |
39 | 37, 38 | eqsstrdi 3975 |
. 2
⊢
((∀𝑥 ∈
𝐴 𝐵 ⊆ 𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹) → (𝐹‘𝐷) ⊆ 𝐶) |
40 | 35, 39 | pm2.61dan 810 |
1
⊢
(∀𝑥 ∈
𝐴 𝐵 ⊆ 𝐶 → (𝐹‘𝐷) ⊆ 𝐶) |