MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptss Structured version   Visualization version   GIF version

Theorem fvmptss 7027
Description: If all the values of the mapping are subsets of a class 𝐶, then so is any evaluation of the mapping, even if 𝐷 is not in the base set 𝐴. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
mptrcl.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptss (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mptrcl.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
21dmmptss 6262 . . . 4 dom 𝐹𝐴
32sseli 3990 . . 3 (𝐷 ∈ dom 𝐹𝐷𝐴)
4 fveq2 6906 . . . . . . 7 (𝑦 = 𝐷 → (𝐹𝑦) = (𝐹𝐷))
54sseq1d 4026 . . . . . 6 (𝑦 = 𝐷 → ((𝐹𝑦) ⊆ 𝐶 ↔ (𝐹𝐷) ⊆ 𝐶))
65imbi2d 340 . . . . 5 (𝑦 = 𝐷 → ((∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶) ↔ (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)))
7 nfcv 2902 . . . . . 6 𝑥𝑦
8 nfra1 3281 . . . . . . 7 𝑥𝑥𝐴 𝐵𝐶
9 nfmpt1 5255 . . . . . . . . . 10 𝑥(𝑥𝐴𝐵)
101, 9nfcxfr 2900 . . . . . . . . 9 𝑥𝐹
1110, 7nffv 6916 . . . . . . . 8 𝑥(𝐹𝑦)
12 nfcv 2902 . . . . . . . 8 𝑥𝐶
1311, 12nfss 3987 . . . . . . 7 𝑥(𝐹𝑦) ⊆ 𝐶
148, 13nfim 1893 . . . . . 6 𝑥(∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶)
15 fveq2 6906 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1615sseq1d 4026 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ⊆ 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
1716imbi2d 340 . . . . . 6 (𝑥 = 𝑦 → ((∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶) ↔ (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶)))
181dmmpt 6261 . . . . . . . . . . 11 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
1918reqabi 3456 . . . . . . . . . 10 (𝑥 ∈ dom 𝐹 ↔ (𝑥𝐴𝐵 ∈ V))
201fvmpt2 7026 . . . . . . . . . . 11 ((𝑥𝐴𝐵 ∈ V) → (𝐹𝑥) = 𝐵)
21 eqimss 4053 . . . . . . . . . . 11 ((𝐹𝑥) = 𝐵 → (𝐹𝑥) ⊆ 𝐵)
2220, 21syl 17 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ V) → (𝐹𝑥) ⊆ 𝐵)
2319, 22sylbi 217 . . . . . . . . 9 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) ⊆ 𝐵)
24 ndmfv 6941 . . . . . . . . . 10 𝑥 ∈ dom 𝐹 → (𝐹𝑥) = ∅)
25 0ss 4405 . . . . . . . . . 10 ∅ ⊆ 𝐵
2624, 25eqsstrdi 4049 . . . . . . . . 9 𝑥 ∈ dom 𝐹 → (𝐹𝑥) ⊆ 𝐵)
2723, 26pm2.61i 182 . . . . . . . 8 (𝐹𝑥) ⊆ 𝐵
28 rsp 3244 . . . . . . . . 9 (∀𝑥𝐴 𝐵𝐶 → (𝑥𝐴𝐵𝐶))
2928impcom 407 . . . . . . . 8 ((𝑥𝐴 ∧ ∀𝑥𝐴 𝐵𝐶) → 𝐵𝐶)
3027, 29sstrid 4006 . . . . . . 7 ((𝑥𝐴 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝑥) ⊆ 𝐶)
3130ex 412 . . . . . 6 (𝑥𝐴 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶))
327, 14, 17, 31vtoclgaf 3575 . . . . 5 (𝑦𝐴 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶))
336, 32vtoclga 3576 . . . 4 (𝐷𝐴 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶))
3433impcom 407 . . 3 ((∀𝑥𝐴 𝐵𝐶𝐷𝐴) → (𝐹𝐷) ⊆ 𝐶)
353, 34sylan2 593 . 2 ((∀𝑥𝐴 𝐵𝐶𝐷 ∈ dom 𝐹) → (𝐹𝐷) ⊆ 𝐶)
36 ndmfv 6941 . . . 4 𝐷 ∈ dom 𝐹 → (𝐹𝐷) = ∅)
3736adantl 481 . . 3 ((∀𝑥𝐴 𝐵𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹) → (𝐹𝐷) = ∅)
38 0ss 4405 . . 3 ∅ ⊆ 𝐶
3937, 38eqsstrdi 4049 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹) → (𝐹𝐷) ⊆ 𝐶)
4035, 39pm2.61dan 813 1 (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  wss 3962  c0 4338  cmpt 5230  dom cdm 5688  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fv 6570
This theorem is referenced by:  relmptopab  7682  ovmptss  8116
  Copyright terms: Public domain W3C validator