MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptss Structured version   Visualization version   GIF version

Theorem fvmptss 6761
Description: If all the values of the mapping are subsets of a class 𝐶, then so is any evaluation of the mapping, even if 𝐷 is not in the base set 𝐴. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
mptrcl.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptss (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mptrcl.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
21dmmptss 6066 . . . 4 dom 𝐹𝐴
32sseli 3914 . . 3 (𝐷 ∈ dom 𝐹𝐷𝐴)
4 fveq2 6649 . . . . . . 7 (𝑦 = 𝐷 → (𝐹𝑦) = (𝐹𝐷))
54sseq1d 3949 . . . . . 6 (𝑦 = 𝐷 → ((𝐹𝑦) ⊆ 𝐶 ↔ (𝐹𝐷) ⊆ 𝐶))
65imbi2d 344 . . . . 5 (𝑦 = 𝐷 → ((∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶) ↔ (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)))
7 nfcv 2958 . . . . . 6 𝑥𝑦
8 nfra1 3186 . . . . . . 7 𝑥𝑥𝐴 𝐵𝐶
9 nfmpt1 5131 . . . . . . . . . 10 𝑥(𝑥𝐴𝐵)
101, 9nfcxfr 2956 . . . . . . . . 9 𝑥𝐹
1110, 7nffv 6659 . . . . . . . 8 𝑥(𝐹𝑦)
12 nfcv 2958 . . . . . . . 8 𝑥𝐶
1311, 12nfss 3910 . . . . . . 7 𝑥(𝐹𝑦) ⊆ 𝐶
148, 13nfim 1897 . . . . . 6 𝑥(∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶)
15 fveq2 6649 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1615sseq1d 3949 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ⊆ 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
1716imbi2d 344 . . . . . 6 (𝑥 = 𝑦 → ((∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶) ↔ (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶)))
181dmmpt 6065 . . . . . . . . . . 11 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
1918rabeq2i 3438 . . . . . . . . . 10 (𝑥 ∈ dom 𝐹 ↔ (𝑥𝐴𝐵 ∈ V))
201fvmpt2 6760 . . . . . . . . . . 11 ((𝑥𝐴𝐵 ∈ V) → (𝐹𝑥) = 𝐵)
21 eqimss 3974 . . . . . . . . . . 11 ((𝐹𝑥) = 𝐵 → (𝐹𝑥) ⊆ 𝐵)
2220, 21syl 17 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ V) → (𝐹𝑥) ⊆ 𝐵)
2319, 22sylbi 220 . . . . . . . . 9 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) ⊆ 𝐵)
24 ndmfv 6679 . . . . . . . . . 10 𝑥 ∈ dom 𝐹 → (𝐹𝑥) = ∅)
25 0ss 4307 . . . . . . . . . 10 ∅ ⊆ 𝐵
2624, 25eqsstrdi 3972 . . . . . . . . 9 𝑥 ∈ dom 𝐹 → (𝐹𝑥) ⊆ 𝐵)
2723, 26pm2.61i 185 . . . . . . . 8 (𝐹𝑥) ⊆ 𝐵
28 rsp 3173 . . . . . . . . 9 (∀𝑥𝐴 𝐵𝐶 → (𝑥𝐴𝐵𝐶))
2928impcom 411 . . . . . . . 8 ((𝑥𝐴 ∧ ∀𝑥𝐴 𝐵𝐶) → 𝐵𝐶)
3027, 29sstrid 3929 . . . . . . 7 ((𝑥𝐴 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝑥) ⊆ 𝐶)
3130ex 416 . . . . . 6 (𝑥𝐴 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶))
327, 14, 17, 31vtoclgaf 3524 . . . . 5 (𝑦𝐴 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶))
336, 32vtoclga 3525 . . . 4 (𝐷𝐴 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶))
3433impcom 411 . . 3 ((∀𝑥𝐴 𝐵𝐶𝐷𝐴) → (𝐹𝐷) ⊆ 𝐶)
353, 34sylan2 595 . 2 ((∀𝑥𝐴 𝐵𝐶𝐷 ∈ dom 𝐹) → (𝐹𝐷) ⊆ 𝐶)
36 ndmfv 6679 . . . 4 𝐷 ∈ dom 𝐹 → (𝐹𝐷) = ∅)
3736adantl 485 . . 3 ((∀𝑥𝐴 𝐵𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹) → (𝐹𝐷) = ∅)
38 0ss 4307 . . 3 ∅ ⊆ 𝐶
3937, 38eqsstrdi 3972 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹) → (𝐹𝐷) ⊆ 𝐶)
4035, 39pm2.61dan 812 1 (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  wral 3109  Vcvv 3444  wss 3884  c0 4246  cmpt 5113  dom cdm 5523  cfv 6328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fv 6336
This theorem is referenced by:  relmptopab  7379  ovmptss  7775
  Copyright terms: Public domain W3C validator