Proof of Theorem crctcshwlkn0lem7
Step | Hyp | Ref
| Expression |
1 | | crctcshwlkn0lem.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ (1..^𝑁)) |
2 | | crctcshwlkn0lem.q |
. . . . . 6
⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) |
3 | | crctcshwlkn0lem.h |
. . . . . 6
⊢ 𝐻 = (𝐹 cyclShift 𝑆) |
4 | | crctcshwlkn0lem.n |
. . . . . 6
⊢ 𝑁 = (♯‘𝐹) |
5 | | crctcshwlkn0lem.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ Word 𝐴) |
6 | | crctcshwlkn0lem.p |
. . . . . 6
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) |
7 | 1, 2, 3, 4, 5, 6 | crctcshwlkn0lem4 29846 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ (0..^(𝑁 − 𝑆))if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗)))) |
8 | | eqidd 2741 |
. . . . . . 7
⊢ (𝜑 → (𝑁 − 𝑆) = (𝑁 − 𝑆)) |
9 | | crctcshwlkn0lem.e |
. . . . . . . 8
⊢ (𝜑 → (𝑃‘𝑁) = (𝑃‘0)) |
10 | 1, 2, 3, 4, 5, 6, 9 | crctcshwlkn0lem6 29848 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁 − 𝑆) = (𝑁 − 𝑆)) → if-((𝑄‘(𝑁 − 𝑆)) = (𝑄‘((𝑁 − 𝑆) + 1)), (𝐼‘(𝐻‘(𝑁 − 𝑆))) = {(𝑄‘(𝑁 − 𝑆))}, {(𝑄‘(𝑁 − 𝑆)), (𝑄‘((𝑁 − 𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁 − 𝑆))))) |
11 | 8, 10 | mpdan 686 |
. . . . . 6
⊢ (𝜑 → if-((𝑄‘(𝑁 − 𝑆)) = (𝑄‘((𝑁 − 𝑆) + 1)), (𝐼‘(𝐻‘(𝑁 − 𝑆))) = {(𝑄‘(𝑁 − 𝑆))}, {(𝑄‘(𝑁 − 𝑆)), (𝑄‘((𝑁 − 𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁 − 𝑆))))) |
12 | | ovex 7481 |
. . . . . . 7
⊢ (𝑁 − 𝑆) ∈ V |
13 | | wkslem1 29643 |
. . . . . . 7
⊢ (𝑗 = (𝑁 − 𝑆) → (if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗))) ↔ if-((𝑄‘(𝑁 − 𝑆)) = (𝑄‘((𝑁 − 𝑆) + 1)), (𝐼‘(𝐻‘(𝑁 − 𝑆))) = {(𝑄‘(𝑁 − 𝑆))}, {(𝑄‘(𝑁 − 𝑆)), (𝑄‘((𝑁 − 𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁 − 𝑆)))))) |
14 | 12, 13 | ralsn 4705 |
. . . . . 6
⊢
(∀𝑗 ∈
{(𝑁 − 𝑆)}if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗))) ↔ if-((𝑄‘(𝑁 − 𝑆)) = (𝑄‘((𝑁 − 𝑆) + 1)), (𝐼‘(𝐻‘(𝑁 − 𝑆))) = {(𝑄‘(𝑁 − 𝑆))}, {(𝑄‘(𝑁 − 𝑆)), (𝑄‘((𝑁 − 𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁 − 𝑆))))) |
15 | 11, 14 | sylibr 234 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ {(𝑁 − 𝑆)}if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗)))) |
16 | | ralunb 4220 |
. . . . 5
⊢
(∀𝑗 ∈
((0..^(𝑁 − 𝑆)) ∪ {(𝑁 − 𝑆)})if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗))) ↔ (∀𝑗 ∈ (0..^(𝑁 − 𝑆))if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗))) ∧ ∀𝑗 ∈ {(𝑁 − 𝑆)}if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗))))) |
17 | 7, 15, 16 | sylanbrc 582 |
. . . 4
⊢ (𝜑 → ∀𝑗 ∈ ((0..^(𝑁 − 𝑆)) ∪ {(𝑁 − 𝑆)})if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗)))) |
18 | | elfzo1 13766 |
. . . . . 6
⊢ (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁)) |
19 | | nnz 12660 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
20 | | nnz 12660 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ ℕ → 𝑆 ∈
ℤ) |
21 | | zsubcl 12685 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝑁 − 𝑆) ∈ ℤ) |
22 | 19, 20, 21 | syl2anr 596 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 − 𝑆) ∈ ℤ) |
23 | 22 | 3adant3 1132 |
. . . . . . . . 9
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁 − 𝑆) ∈ ℤ) |
24 | | nnre 12300 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ ℕ → 𝑆 ∈
ℝ) |
25 | | nnre 12300 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
26 | | posdif 11783 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 ↔ 0 < (𝑁 − 𝑆))) |
27 | | 0re 11292 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
28 | | resubcl 11600 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁 − 𝑆) ∈ ℝ) |
29 | 28 | ancoms 458 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁 − 𝑆) ∈ ℝ) |
30 | | ltle 11378 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ (𝑁
− 𝑆) ∈ ℝ)
→ (0 < (𝑁 −
𝑆) → 0 ≤ (𝑁 − 𝑆))) |
31 | 27, 29, 30 | sylancr 586 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 <
(𝑁 − 𝑆) → 0 ≤ (𝑁 − 𝑆))) |
32 | 26, 31 | sylbid 240 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → 0 ≤ (𝑁 − 𝑆))) |
33 | 24, 25, 32 | syl2an 595 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 → 0 ≤ (𝑁 − 𝑆))) |
34 | 33 | 3impia 1117 |
. . . . . . . . 9
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 0 ≤ (𝑁 − 𝑆)) |
35 | | elnn0z 12652 |
. . . . . . . . 9
⊢ ((𝑁 − 𝑆) ∈ ℕ0 ↔ ((𝑁 − 𝑆) ∈ ℤ ∧ 0 ≤ (𝑁 − 𝑆))) |
36 | 23, 34, 35 | sylanbrc 582 |
. . . . . . . 8
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁 − 𝑆) ∈
ℕ0) |
37 | | elnn0uz 12948 |
. . . . . . . 8
⊢ ((𝑁 − 𝑆) ∈ ℕ0 ↔ (𝑁 − 𝑆) ∈
(ℤ≥‘0)) |
38 | 36, 37 | sylib 218 |
. . . . . . 7
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁 − 𝑆) ∈
(ℤ≥‘0)) |
39 | | fzosplitsn 13825 |
. . . . . . 7
⊢ ((𝑁 − 𝑆) ∈ (ℤ≥‘0)
→ (0..^((𝑁 −
𝑆) + 1)) = ((0..^(𝑁 − 𝑆)) ∪ {(𝑁 − 𝑆)})) |
40 | 38, 39 | syl 17 |
. . . . . 6
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (0..^((𝑁 − 𝑆) + 1)) = ((0..^(𝑁 − 𝑆)) ∪ {(𝑁 − 𝑆)})) |
41 | 18, 40 | sylbi 217 |
. . . . 5
⊢ (𝑆 ∈ (1..^𝑁) → (0..^((𝑁 − 𝑆) + 1)) = ((0..^(𝑁 − 𝑆)) ∪ {(𝑁 − 𝑆)})) |
42 | 1, 41 | syl 17 |
. . . 4
⊢ (𝜑 → (0..^((𝑁 − 𝑆) + 1)) = ((0..^(𝑁 − 𝑆)) ∪ {(𝑁 − 𝑆)})) |
43 | 17, 42 | raleqtrrdv 3338 |
. . 3
⊢ (𝜑 → ∀𝑗 ∈ (0..^((𝑁 − 𝑆) + 1))if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗)))) |
44 | 1, 2, 3, 4, 5, 6 | crctcshwlkn0lem5 29847 |
. . 3
⊢ (𝜑 → ∀𝑗 ∈ (((𝑁 − 𝑆) + 1)..^𝑁)if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗)))) |
45 | | ralunb 4220 |
. . 3
⊢
(∀𝑗 ∈
((0..^((𝑁 − 𝑆) + 1)) ∪ (((𝑁 − 𝑆) + 1)..^𝑁))if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗))) ↔ (∀𝑗 ∈ (0..^((𝑁 − 𝑆) + 1))if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗))) ∧ ∀𝑗 ∈ (((𝑁 − 𝑆) + 1)..^𝑁)if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗))))) |
46 | 43, 44, 45 | sylanbrc 582 |
. 2
⊢ (𝜑 → ∀𝑗 ∈ ((0..^((𝑁 − 𝑆) + 1)) ∪ (((𝑁 − 𝑆) + 1)..^𝑁))if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗)))) |
47 | | nnsub 12337 |
. . . . . . 7
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 ↔ (𝑁 − 𝑆) ∈ ℕ)) |
48 | 47 | biimp3a 1469 |
. . . . . 6
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁 − 𝑆) ∈ ℕ) |
49 | | nnnn0 12560 |
. . . . . 6
⊢ ((𝑁 − 𝑆) ∈ ℕ → (𝑁 − 𝑆) ∈
ℕ0) |
50 | | peano2nn0 12593 |
. . . . . 6
⊢ ((𝑁 − 𝑆) ∈ ℕ0 → ((𝑁 − 𝑆) + 1) ∈
ℕ0) |
51 | 48, 49, 50 | 3syl 18 |
. . . . 5
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁 − 𝑆) + 1) ∈
ℕ0) |
52 | | nnnn0 12560 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
53 | 52 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ∈
ℕ0) |
54 | 25 | anim1i 614 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈
ℕ)) |
55 | 54 | ancoms 458 |
. . . . . . 7
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈
ℕ)) |
56 | | crctcshwlkn0lem1 29843 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ) → ((𝑁 − 𝑆) + 1) ≤ 𝑁) |
57 | 55, 56 | syl 17 |
. . . . . 6
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 𝑆) + 1) ≤ 𝑁) |
58 | 57 | 3adant3 1132 |
. . . . 5
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁 − 𝑆) + 1) ≤ 𝑁) |
59 | | elfz2nn0 13675 |
. . . . 5
⊢ (((𝑁 − 𝑆) + 1) ∈ (0...𝑁) ↔ (((𝑁 − 𝑆) + 1) ∈ ℕ0 ∧
𝑁 ∈
ℕ0 ∧ ((𝑁 − 𝑆) + 1) ≤ 𝑁)) |
60 | 51, 53, 58, 59 | syl3anbrc 1343 |
. . . 4
⊢ ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁 − 𝑆) + 1) ∈ (0...𝑁)) |
61 | 18, 60 | sylbi 217 |
. . 3
⊢ (𝑆 ∈ (1..^𝑁) → ((𝑁 − 𝑆) + 1) ∈ (0...𝑁)) |
62 | | fzosplit 13749 |
. . 3
⊢ (((𝑁 − 𝑆) + 1) ∈ (0...𝑁) → (0..^𝑁) = ((0..^((𝑁 − 𝑆) + 1)) ∪ (((𝑁 − 𝑆) + 1)..^𝑁))) |
63 | 1, 61, 62 | 3syl 18 |
. 2
⊢ (𝜑 → (0..^𝑁) = ((0..^((𝑁 − 𝑆) + 1)) ∪ (((𝑁 − 𝑆) + 1)..^𝑁))) |
64 | 46, 63 | raleqtrrdv 3338 |
1
⊢ (𝜑 → ∀𝑗 ∈ (0..^𝑁)if-((𝑄‘𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻‘𝑗)) = {(𝑄‘𝑗)}, {(𝑄‘𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻‘𝑗)))) |