MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem7 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem7 27281
Description: Lemma for crctcshwlkn0 27286. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
crctcshwlkn0lem.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcshwlkn0lem.n 𝑁 = (♯‘𝐹)
crctcshwlkn0lem.f (𝜑𝐹 ∈ Word 𝐴)
crctcshwlkn0lem.p (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
crctcshwlkn0lem.e (𝜑 → (𝑃𝑁) = (𝑃‘0))
Assertion
Ref Expression
crctcshwlkn0lem7 (𝜑 → ∀𝑗 ∈ (0..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁   𝑃,𝑖   𝑆,𝑖   𝜑,𝑖,𝑗   𝑥,𝑗   𝑗,𝐼   𝑗,𝐻   𝑗,𝑁   𝑄,𝑗   𝑆,𝑗
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗)   𝑃(𝑗)   𝑄(𝑥,𝑖)   𝐹(𝑥,𝑗)   𝐻(𝑥,𝑖)   𝐼(𝑥)

Proof of Theorem crctcshwlkn0lem7
StepHypRef Expression
1 crctcshwlkn0lem.s . . . . . 6 (𝜑𝑆 ∈ (1..^𝑁))
2 crctcshwlkn0lem.q . . . . . 6 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
3 crctcshwlkn0lem.h . . . . . 6 𝐻 = (𝐹 cyclShift 𝑆)
4 crctcshwlkn0lem.n . . . . . 6 𝑁 = (♯‘𝐹)
5 crctcshwlkn0lem.f . . . . . 6 (𝜑𝐹 ∈ Word 𝐴)
6 crctcshwlkn0lem.p . . . . . 6 (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
71, 2, 3, 4, 5, 6crctcshwlkn0lem4 27278 . . . . 5 (𝜑 → ∀𝑗 ∈ (0..^(𝑁𝑆))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
8 eqidd 2796 . . . . . . 7 (𝜑 → (𝑁𝑆) = (𝑁𝑆))
9 crctcshwlkn0lem.e . . . . . . . 8 (𝜑 → (𝑃𝑁) = (𝑃‘0))
101, 2, 3, 4, 5, 6, 9crctcshwlkn0lem6 27280 . . . . . . 7 ((𝜑 ∧ (𝑁𝑆) = (𝑁𝑆)) → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
118, 10mpdan 683 . . . . . 6 (𝜑 → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
12 ovex 7048 . . . . . . 7 (𝑁𝑆) ∈ V
13 wkslem1 27072 . . . . . . 7 (𝑗 = (𝑁𝑆) → (if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))))))
1412, 13ralsn 4526 . . . . . 6 (∀𝑗 ∈ {(𝑁𝑆)}if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
1511, 14sylibr 235 . . . . 5 (𝜑 → ∀𝑗 ∈ {(𝑁𝑆)}if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
16 ralunb 4088 . . . . 5 (∀𝑗 ∈ ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)})if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ (∀𝑗 ∈ (0..^(𝑁𝑆))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ∧ ∀𝑗 ∈ {(𝑁𝑆)}if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)))))
177, 15, 16sylanbrc 583 . . . 4 (𝜑 → ∀𝑗 ∈ ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)})if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
18 elfzo1 12937 . . . . . . 7 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
19 nnz 11853 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
20 nnz 11853 . . . . . . . . . . . 12 (𝑆 ∈ ℕ → 𝑆 ∈ ℤ)
21 zsubcl 11873 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝑁𝑆) ∈ ℤ)
2219, 20, 21syl2anr 596 . . . . . . . . . . 11 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑆) ∈ ℤ)
23223adant3 1125 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℤ)
24 nnre 11493 . . . . . . . . . . . 12 (𝑆 ∈ ℕ → 𝑆 ∈ ℝ)
25 nnre 11493 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
26 posdif 10981 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 ↔ 0 < (𝑁𝑆)))
27 0re 10489 . . . . . . . . . . . . . 14 0 ∈ ℝ
28 resubcl 10798 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
2928ancoms 459 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
30 ltle 10576 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
3127, 29, 30sylancr 587 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
3226, 31sylbid 241 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → 0 ≤ (𝑁𝑆)))
3324, 25, 32syl2an 595 . . . . . . . . . . 11 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 → 0 ≤ (𝑁𝑆)))
34333impia 1110 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 0 ≤ (𝑁𝑆))
35 elnn0z 11842 . . . . . . . . . 10 ((𝑁𝑆) ∈ ℕ0 ↔ ((𝑁𝑆) ∈ ℤ ∧ 0 ≤ (𝑁𝑆)))
3623, 34, 35sylanbrc 583 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ0)
37 elnn0uz 12132 . . . . . . . . 9 ((𝑁𝑆) ∈ ℕ0 ↔ (𝑁𝑆) ∈ (ℤ‘0))
3836, 37sylib 219 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ (ℤ‘0))
39 fzosplitsn 12995 . . . . . . . 8 ((𝑁𝑆) ∈ (ℤ‘0) → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
4038, 39syl 17 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
4118, 40sylbi 218 . . . . . 6 (𝑆 ∈ (1..^𝑁) → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
421, 41syl 17 . . . . 5 (𝜑 → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
4342raleqdv 3375 . . . 4 (𝜑 → (∀𝑗 ∈ (0..^((𝑁𝑆) + 1))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ ∀𝑗 ∈ ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)})if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)))))
4417, 43mpbird 258 . . 3 (𝜑 → ∀𝑗 ∈ (0..^((𝑁𝑆) + 1))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
451, 2, 3, 4, 5, 6crctcshwlkn0lem5 27279 . . 3 (𝜑 → ∀𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
46 ralunb 4088 . . 3 (∀𝑗 ∈ ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ (∀𝑗 ∈ (0..^((𝑁𝑆) + 1))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ∧ ∀𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)))))
4744, 45, 46sylanbrc 583 . 2 (𝜑 → ∀𝑗 ∈ ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
48 nnsub 11529 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 ↔ (𝑁𝑆) ∈ ℕ))
4948biimp3a 1461 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ)
50 nnnn0 11752 . . . . . . 7 ((𝑁𝑆) ∈ ℕ → (𝑁𝑆) ∈ ℕ0)
51 peano2nn0 11785 . . . . . . 7 ((𝑁𝑆) ∈ ℕ0 → ((𝑁𝑆) + 1) ∈ ℕ0)
5249, 50, 513syl 18 . . . . . 6 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ∈ ℕ0)
53 nnnn0 11752 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
54533ad2ant2 1127 . . . . . 6 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ∈ ℕ0)
5525anim1i 614 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
5655ancoms 459 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
57 crctcshwlkn0lem1 27275 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
5856, 57syl 17 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
59583adant3 1125 . . . . . 6 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ≤ 𝑁)
60 elfz2nn0 12848 . . . . . 6 (((𝑁𝑆) + 1) ∈ (0...𝑁) ↔ (((𝑁𝑆) + 1) ∈ ℕ0𝑁 ∈ ℕ0 ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
6152, 54, 59, 60syl3anbrc 1336 . . . . 5 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ∈ (0...𝑁))
6218, 61sylbi 218 . . . 4 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ (0...𝑁))
63 fzosplit 12920 . . . 4 (((𝑁𝑆) + 1) ∈ (0...𝑁) → (0..^𝑁) = ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁)))
641, 62, 633syl 18 . . 3 (𝜑 → (0..^𝑁) = ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁)))
6564raleqdv 3375 . 2 (𝜑 → (∀𝑗 ∈ (0..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ ∀𝑗 ∈ ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)))))
6647, 65mpbird 258 1 (𝜑 → ∀𝑗 ∈ (0..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  if-wif 1055  w3a 1080   = wceq 1522  wcel 2081  wral 3105  cun 3857  wss 3859  ifcif 4381  {csn 4472  {cpr 4474   class class class wbr 4962  cmpt 5041  cfv 6225  (class class class)co 7016  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   < clt 10521  cle 10522  cmin 10717  cn 11486  0cn0 11745  cz 11829  cuz 12093  ...cfz 12742  ..^cfzo 12883  chash 13540  Word cword 13707   cyclShift ccsh 13986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-ifp 1056  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-hash 13541  df-word 13708  df-concat 13769  df-substr 13839  df-pfx 13869  df-csh 13987
This theorem is referenced by:  crctcshwlkn0  27286
  Copyright terms: Public domain W3C validator