MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem7 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem7 29779
Description: Lemma for crctcshwlkn0 29784. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
crctcshwlkn0lem.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcshwlkn0lem.n 𝑁 = (♯‘𝐹)
crctcshwlkn0lem.f (𝜑𝐹 ∈ Word 𝐴)
crctcshwlkn0lem.p (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
crctcshwlkn0lem.e (𝜑 → (𝑃𝑁) = (𝑃‘0))
Assertion
Ref Expression
crctcshwlkn0lem7 (𝜑 → ∀𝑗 ∈ (0..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁   𝑃,𝑖   𝑆,𝑖   𝜑,𝑖,𝑗   𝑥,𝑗   𝑗,𝐼   𝑗,𝐻   𝑗,𝑁   𝑄,𝑗   𝑆,𝑗
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗)   𝑃(𝑗)   𝑄(𝑥,𝑖)   𝐹(𝑥,𝑗)   𝐻(𝑥,𝑖)   𝐼(𝑥)

Proof of Theorem crctcshwlkn0lem7
StepHypRef Expression
1 crctcshwlkn0lem.s . . . . . 6 (𝜑𝑆 ∈ (1..^𝑁))
2 crctcshwlkn0lem.q . . . . . 6 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
3 crctcshwlkn0lem.h . . . . . 6 𝐻 = (𝐹 cyclShift 𝑆)
4 crctcshwlkn0lem.n . . . . . 6 𝑁 = (♯‘𝐹)
5 crctcshwlkn0lem.f . . . . . 6 (𝜑𝐹 ∈ Word 𝐴)
6 crctcshwlkn0lem.p . . . . . 6 (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
71, 2, 3, 4, 5, 6crctcshwlkn0lem4 29776 . . . . 5 (𝜑 → ∀𝑗 ∈ (0..^(𝑁𝑆))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
8 eqidd 2730 . . . . . . 7 (𝜑 → (𝑁𝑆) = (𝑁𝑆))
9 crctcshwlkn0lem.e . . . . . . . 8 (𝜑 → (𝑃𝑁) = (𝑃‘0))
101, 2, 3, 4, 5, 6, 9crctcshwlkn0lem6 29778 . . . . . . 7 ((𝜑 ∧ (𝑁𝑆) = (𝑁𝑆)) → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
118, 10mpdan 687 . . . . . 6 (𝜑 → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
12 ovex 7386 . . . . . . 7 (𝑁𝑆) ∈ V
13 wkslem1 29571 . . . . . . 7 (𝑗 = (𝑁𝑆) → (if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))))))
1412, 13ralsn 4635 . . . . . 6 (∀𝑗 ∈ {(𝑁𝑆)}if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
1511, 14sylibr 234 . . . . 5 (𝜑 → ∀𝑗 ∈ {(𝑁𝑆)}if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
16 ralunb 4150 . . . . 5 (∀𝑗 ∈ ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)})if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ (∀𝑗 ∈ (0..^(𝑁𝑆))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ∧ ∀𝑗 ∈ {(𝑁𝑆)}if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)))))
177, 15, 16sylanbrc 583 . . . 4 (𝜑 → ∀𝑗 ∈ ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)})if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
18 elfzo1 13633 . . . . . 6 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
19 nnz 12510 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
20 nnz 12510 . . . . . . . . . . 11 (𝑆 ∈ ℕ → 𝑆 ∈ ℤ)
21 zsubcl 12535 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝑁𝑆) ∈ ℤ)
2219, 20, 21syl2anr 597 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑆) ∈ ℤ)
23223adant3 1132 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℤ)
24 nnre 12153 . . . . . . . . . . 11 (𝑆 ∈ ℕ → 𝑆 ∈ ℝ)
25 nnre 12153 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
26 posdif 11631 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 ↔ 0 < (𝑁𝑆)))
27 0re 11136 . . . . . . . . . . . . 13 0 ∈ ℝ
28 resubcl 11446 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
2928ancoms 458 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
30 ltle 11222 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
3127, 29, 30sylancr 587 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
3226, 31sylbid 240 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → 0 ≤ (𝑁𝑆)))
3324, 25, 32syl2an 596 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 → 0 ≤ (𝑁𝑆)))
34333impia 1117 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 0 ≤ (𝑁𝑆))
35 elnn0z 12502 . . . . . . . . 9 ((𝑁𝑆) ∈ ℕ0 ↔ ((𝑁𝑆) ∈ ℤ ∧ 0 ≤ (𝑁𝑆)))
3623, 34, 35sylanbrc 583 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ0)
37 elnn0uz 12798 . . . . . . . 8 ((𝑁𝑆) ∈ ℕ0 ↔ (𝑁𝑆) ∈ (ℤ‘0))
3836, 37sylib 218 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ (ℤ‘0))
39 fzosplitsn 13696 . . . . . . 7 ((𝑁𝑆) ∈ (ℤ‘0) → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
4038, 39syl 17 . . . . . 6 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
4118, 40sylbi 217 . . . . 5 (𝑆 ∈ (1..^𝑁) → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
421, 41syl 17 . . . 4 (𝜑 → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
4317, 42raleqtrrdv 3294 . . 3 (𝜑 → ∀𝑗 ∈ (0..^((𝑁𝑆) + 1))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
441, 2, 3, 4, 5, 6crctcshwlkn0lem5 29777 . . 3 (𝜑 → ∀𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
45 ralunb 4150 . . 3 (∀𝑗 ∈ ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ (∀𝑗 ∈ (0..^((𝑁𝑆) + 1))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ∧ ∀𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)))))
4643, 44, 45sylanbrc 583 . 2 (𝜑 → ∀𝑗 ∈ ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
47 nnsub 12190 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 ↔ (𝑁𝑆) ∈ ℕ))
4847biimp3a 1471 . . . . . 6 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ)
49 nnnn0 12409 . . . . . 6 ((𝑁𝑆) ∈ ℕ → (𝑁𝑆) ∈ ℕ0)
50 peano2nn0 12442 . . . . . 6 ((𝑁𝑆) ∈ ℕ0 → ((𝑁𝑆) + 1) ∈ ℕ0)
5148, 49, 503syl 18 . . . . 5 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ∈ ℕ0)
52 nnnn0 12409 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
53523ad2ant2 1134 . . . . 5 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ∈ ℕ0)
5425anim1i 615 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
5554ancoms 458 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
56 crctcshwlkn0lem1 29773 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
5755, 56syl 17 . . . . . 6 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
58573adant3 1132 . . . . 5 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ≤ 𝑁)
59 elfz2nn0 13539 . . . . 5 (((𝑁𝑆) + 1) ∈ (0...𝑁) ↔ (((𝑁𝑆) + 1) ∈ ℕ0𝑁 ∈ ℕ0 ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
6051, 53, 58, 59syl3anbrc 1344 . . . 4 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ∈ (0...𝑁))
6118, 60sylbi 217 . . 3 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ (0...𝑁))
62 fzosplit 13613 . . 3 (((𝑁𝑆) + 1) ∈ (0...𝑁) → (0..^𝑁) = ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁)))
631, 61, 623syl 18 . 2 (𝜑 → (0..^𝑁) = ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁)))
6446, 63raleqtrrdv 3294 1 (𝜑 → ∀𝑗 ∈ (0..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cun 3903  wss 3905  ifcif 4478  {csn 4579  {cpr 4581   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cle 11169  cmin 11365  cn 12146  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  ..^cfzo 13575  chash 14255  Word cword 14438   cyclShift ccsh 14712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-hash 14256  df-word 14439  df-concat 14496  df-substr 14566  df-pfx 14596  df-csh 14713
This theorem is referenced by:  crctcshwlkn0  29784
  Copyright terms: Public domain W3C validator