MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem7 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem7 28082
Description: Lemma for crctcshwlkn0 28087. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
crctcshwlkn0lem.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcshwlkn0lem.n 𝑁 = (♯‘𝐹)
crctcshwlkn0lem.f (𝜑𝐹 ∈ Word 𝐴)
crctcshwlkn0lem.p (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
crctcshwlkn0lem.e (𝜑 → (𝑃𝑁) = (𝑃‘0))
Assertion
Ref Expression
crctcshwlkn0lem7 (𝜑 → ∀𝑗 ∈ (0..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁   𝑃,𝑖   𝑆,𝑖   𝜑,𝑖,𝑗   𝑥,𝑗   𝑗,𝐼   𝑗,𝐻   𝑗,𝑁   𝑄,𝑗   𝑆,𝑗
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗)   𝑃(𝑗)   𝑄(𝑥,𝑖)   𝐹(𝑥,𝑗)   𝐻(𝑥,𝑖)   𝐼(𝑥)

Proof of Theorem crctcshwlkn0lem7
StepHypRef Expression
1 crctcshwlkn0lem.s . . . . . 6 (𝜑𝑆 ∈ (1..^𝑁))
2 crctcshwlkn0lem.q . . . . . 6 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
3 crctcshwlkn0lem.h . . . . . 6 𝐻 = (𝐹 cyclShift 𝑆)
4 crctcshwlkn0lem.n . . . . . 6 𝑁 = (♯‘𝐹)
5 crctcshwlkn0lem.f . . . . . 6 (𝜑𝐹 ∈ Word 𝐴)
6 crctcshwlkn0lem.p . . . . . 6 (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
71, 2, 3, 4, 5, 6crctcshwlkn0lem4 28079 . . . . 5 (𝜑 → ∀𝑗 ∈ (0..^(𝑁𝑆))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
8 eqidd 2739 . . . . . . 7 (𝜑 → (𝑁𝑆) = (𝑁𝑆))
9 crctcshwlkn0lem.e . . . . . . . 8 (𝜑 → (𝑃𝑁) = (𝑃‘0))
101, 2, 3, 4, 5, 6, 9crctcshwlkn0lem6 28081 . . . . . . 7 ((𝜑 ∧ (𝑁𝑆) = (𝑁𝑆)) → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
118, 10mpdan 683 . . . . . 6 (𝜑 → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
12 ovex 7288 . . . . . . 7 (𝑁𝑆) ∈ V
13 wkslem1 27877 . . . . . . 7 (𝑗 = (𝑁𝑆) → (if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))))))
1412, 13ralsn 4614 . . . . . 6 (∀𝑗 ∈ {(𝑁𝑆)}if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
1511, 14sylibr 233 . . . . 5 (𝜑 → ∀𝑗 ∈ {(𝑁𝑆)}if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
16 ralunb 4121 . . . . 5 (∀𝑗 ∈ ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)})if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ (∀𝑗 ∈ (0..^(𝑁𝑆))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ∧ ∀𝑗 ∈ {(𝑁𝑆)}if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)))))
177, 15, 16sylanbrc 582 . . . 4 (𝜑 → ∀𝑗 ∈ ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)})if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
18 elfzo1 13365 . . . . . . 7 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
19 nnz 12272 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
20 nnz 12272 . . . . . . . . . . . 12 (𝑆 ∈ ℕ → 𝑆 ∈ ℤ)
21 zsubcl 12292 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝑁𝑆) ∈ ℤ)
2219, 20, 21syl2anr 596 . . . . . . . . . . 11 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑆) ∈ ℤ)
23223adant3 1130 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℤ)
24 nnre 11910 . . . . . . . . . . . 12 (𝑆 ∈ ℕ → 𝑆 ∈ ℝ)
25 nnre 11910 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
26 posdif 11398 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 ↔ 0 < (𝑁𝑆)))
27 0re 10908 . . . . . . . . . . . . . 14 0 ∈ ℝ
28 resubcl 11215 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
2928ancoms 458 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
30 ltle 10994 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
3127, 29, 30sylancr 586 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
3226, 31sylbid 239 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → 0 ≤ (𝑁𝑆)))
3324, 25, 32syl2an 595 . . . . . . . . . . 11 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 → 0 ≤ (𝑁𝑆)))
34333impia 1115 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 0 ≤ (𝑁𝑆))
35 elnn0z 12262 . . . . . . . . . 10 ((𝑁𝑆) ∈ ℕ0 ↔ ((𝑁𝑆) ∈ ℤ ∧ 0 ≤ (𝑁𝑆)))
3623, 34, 35sylanbrc 582 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ0)
37 elnn0uz 12552 . . . . . . . . 9 ((𝑁𝑆) ∈ ℕ0 ↔ (𝑁𝑆) ∈ (ℤ‘0))
3836, 37sylib 217 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ (ℤ‘0))
39 fzosplitsn 13423 . . . . . . . 8 ((𝑁𝑆) ∈ (ℤ‘0) → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
4038, 39syl 17 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
4118, 40sylbi 216 . . . . . 6 (𝑆 ∈ (1..^𝑁) → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
421, 41syl 17 . . . . 5 (𝜑 → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
4342raleqdv 3339 . . . 4 (𝜑 → (∀𝑗 ∈ (0..^((𝑁𝑆) + 1))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ ∀𝑗 ∈ ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)})if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)))))
4417, 43mpbird 256 . . 3 (𝜑 → ∀𝑗 ∈ (0..^((𝑁𝑆) + 1))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
451, 2, 3, 4, 5, 6crctcshwlkn0lem5 28080 . . 3 (𝜑 → ∀𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
46 ralunb 4121 . . 3 (∀𝑗 ∈ ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ (∀𝑗 ∈ (0..^((𝑁𝑆) + 1))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ∧ ∀𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)))))
4744, 45, 46sylanbrc 582 . 2 (𝜑 → ∀𝑗 ∈ ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
48 nnsub 11947 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 ↔ (𝑁𝑆) ∈ ℕ))
4948biimp3a 1467 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ)
50 nnnn0 12170 . . . . . . 7 ((𝑁𝑆) ∈ ℕ → (𝑁𝑆) ∈ ℕ0)
51 peano2nn0 12203 . . . . . . 7 ((𝑁𝑆) ∈ ℕ0 → ((𝑁𝑆) + 1) ∈ ℕ0)
5249, 50, 513syl 18 . . . . . 6 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ∈ ℕ0)
53 nnnn0 12170 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
54533ad2ant2 1132 . . . . . 6 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ∈ ℕ0)
5525anim1i 614 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
5655ancoms 458 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
57 crctcshwlkn0lem1 28076 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
5856, 57syl 17 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
59583adant3 1130 . . . . . 6 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ≤ 𝑁)
60 elfz2nn0 13276 . . . . . 6 (((𝑁𝑆) + 1) ∈ (0...𝑁) ↔ (((𝑁𝑆) + 1) ∈ ℕ0𝑁 ∈ ℕ0 ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
6152, 54, 59, 60syl3anbrc 1341 . . . . 5 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ∈ (0...𝑁))
6218, 61sylbi 216 . . . 4 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ (0...𝑁))
63 fzosplit 13348 . . . 4 (((𝑁𝑆) + 1) ∈ (0...𝑁) → (0..^𝑁) = ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁)))
641, 62, 633syl 18 . . 3 (𝜑 → (0..^𝑁) = ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁)))
6564raleqdv 3339 . 2 (𝜑 → (∀𝑗 ∈ (0..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ ∀𝑗 ∈ ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)))))
6647, 65mpbird 256 1 (𝜑 → ∀𝑗 ∈ (0..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  if-wif 1059  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cun 3881  wss 3883  ifcif 4456  {csn 4558  {cpr 4560   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   cyclShift ccsh 14429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-hash 13973  df-word 14146  df-concat 14202  df-substr 14282  df-pfx 14312  df-csh 14430
This theorem is referenced by:  crctcshwlkn0  28087
  Copyright terms: Public domain W3C validator