MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem7 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem7 29849
Description: Lemma for crctcshwlkn0 29854. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
crctcshwlkn0lem.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcshwlkn0lem.n 𝑁 = (♯‘𝐹)
crctcshwlkn0lem.f (𝜑𝐹 ∈ Word 𝐴)
crctcshwlkn0lem.p (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
crctcshwlkn0lem.e (𝜑 → (𝑃𝑁) = (𝑃‘0))
Assertion
Ref Expression
crctcshwlkn0lem7 (𝜑 → ∀𝑗 ∈ (0..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁   𝑃,𝑖   𝑆,𝑖   𝜑,𝑖,𝑗   𝑥,𝑗   𝑗,𝐼   𝑗,𝐻   𝑗,𝑁   𝑄,𝑗   𝑆,𝑗
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗)   𝑃(𝑗)   𝑄(𝑥,𝑖)   𝐹(𝑥,𝑗)   𝐻(𝑥,𝑖)   𝐼(𝑥)

Proof of Theorem crctcshwlkn0lem7
StepHypRef Expression
1 crctcshwlkn0lem.s . . . . . 6 (𝜑𝑆 ∈ (1..^𝑁))
2 crctcshwlkn0lem.q . . . . . 6 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
3 crctcshwlkn0lem.h . . . . . 6 𝐻 = (𝐹 cyclShift 𝑆)
4 crctcshwlkn0lem.n . . . . . 6 𝑁 = (♯‘𝐹)
5 crctcshwlkn0lem.f . . . . . 6 (𝜑𝐹 ∈ Word 𝐴)
6 crctcshwlkn0lem.p . . . . . 6 (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
71, 2, 3, 4, 5, 6crctcshwlkn0lem4 29846 . . . . 5 (𝜑 → ∀𝑗 ∈ (0..^(𝑁𝑆))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
8 eqidd 2741 . . . . . . 7 (𝜑 → (𝑁𝑆) = (𝑁𝑆))
9 crctcshwlkn0lem.e . . . . . . . 8 (𝜑 → (𝑃𝑁) = (𝑃‘0))
101, 2, 3, 4, 5, 6, 9crctcshwlkn0lem6 29848 . . . . . . 7 ((𝜑 ∧ (𝑁𝑆) = (𝑁𝑆)) → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
118, 10mpdan 686 . . . . . 6 (𝜑 → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
12 ovex 7481 . . . . . . 7 (𝑁𝑆) ∈ V
13 wkslem1 29643 . . . . . . 7 (𝑗 = (𝑁𝑆) → (if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))))))
1412, 13ralsn 4705 . . . . . 6 (∀𝑗 ∈ {(𝑁𝑆)}if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
1511, 14sylibr 234 . . . . 5 (𝜑 → ∀𝑗 ∈ {(𝑁𝑆)}if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
16 ralunb 4220 . . . . 5 (∀𝑗 ∈ ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)})if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ (∀𝑗 ∈ (0..^(𝑁𝑆))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ∧ ∀𝑗 ∈ {(𝑁𝑆)}if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)))))
177, 15, 16sylanbrc 582 . . . 4 (𝜑 → ∀𝑗 ∈ ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)})if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
18 elfzo1 13766 . . . . . 6 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
19 nnz 12660 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
20 nnz 12660 . . . . . . . . . . 11 (𝑆 ∈ ℕ → 𝑆 ∈ ℤ)
21 zsubcl 12685 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝑁𝑆) ∈ ℤ)
2219, 20, 21syl2anr 596 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑆) ∈ ℤ)
23223adant3 1132 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℤ)
24 nnre 12300 . . . . . . . . . . 11 (𝑆 ∈ ℕ → 𝑆 ∈ ℝ)
25 nnre 12300 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
26 posdif 11783 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 ↔ 0 < (𝑁𝑆)))
27 0re 11292 . . . . . . . . . . . . 13 0 ∈ ℝ
28 resubcl 11600 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
2928ancoms 458 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
30 ltle 11378 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
3127, 29, 30sylancr 586 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
3226, 31sylbid 240 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → 0 ≤ (𝑁𝑆)))
3324, 25, 32syl2an 595 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 → 0 ≤ (𝑁𝑆)))
34333impia 1117 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 0 ≤ (𝑁𝑆))
35 elnn0z 12652 . . . . . . . . 9 ((𝑁𝑆) ∈ ℕ0 ↔ ((𝑁𝑆) ∈ ℤ ∧ 0 ≤ (𝑁𝑆)))
3623, 34, 35sylanbrc 582 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ0)
37 elnn0uz 12948 . . . . . . . 8 ((𝑁𝑆) ∈ ℕ0 ↔ (𝑁𝑆) ∈ (ℤ‘0))
3836, 37sylib 218 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ (ℤ‘0))
39 fzosplitsn 13825 . . . . . . 7 ((𝑁𝑆) ∈ (ℤ‘0) → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
4038, 39syl 17 . . . . . 6 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
4118, 40sylbi 217 . . . . 5 (𝑆 ∈ (1..^𝑁) → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
421, 41syl 17 . . . 4 (𝜑 → (0..^((𝑁𝑆) + 1)) = ((0..^(𝑁𝑆)) ∪ {(𝑁𝑆)}))
4317, 42raleqtrrdv 3338 . . 3 (𝜑 → ∀𝑗 ∈ (0..^((𝑁𝑆) + 1))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
441, 2, 3, 4, 5, 6crctcshwlkn0lem5 29847 . . 3 (𝜑 → ∀𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
45 ralunb 4220 . . 3 (∀𝑗 ∈ ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ↔ (∀𝑗 ∈ (0..^((𝑁𝑆) + 1))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))) ∧ ∀𝑗 ∈ (((𝑁𝑆) + 1)..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗)))))
4643, 44, 45sylanbrc 582 . 2 (𝜑 → ∀𝑗 ∈ ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁))if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
47 nnsub 12337 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 ↔ (𝑁𝑆) ∈ ℕ))
4847biimp3a 1469 . . . . . 6 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ)
49 nnnn0 12560 . . . . . 6 ((𝑁𝑆) ∈ ℕ → (𝑁𝑆) ∈ ℕ0)
50 peano2nn0 12593 . . . . . 6 ((𝑁𝑆) ∈ ℕ0 → ((𝑁𝑆) + 1) ∈ ℕ0)
5148, 49, 503syl 18 . . . . 5 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ∈ ℕ0)
52 nnnn0 12560 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
53523ad2ant2 1134 . . . . 5 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ∈ ℕ0)
5425anim1i 614 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
5554ancoms 458 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
56 crctcshwlkn0lem1 29843 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
5755, 56syl 17 . . . . . 6 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
58573adant3 1132 . . . . 5 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ≤ 𝑁)
59 elfz2nn0 13675 . . . . 5 (((𝑁𝑆) + 1) ∈ (0...𝑁) ↔ (((𝑁𝑆) + 1) ∈ ℕ0𝑁 ∈ ℕ0 ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
6051, 53, 58, 59syl3anbrc 1343 . . . 4 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ∈ (0...𝑁))
6118, 60sylbi 217 . . 3 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ (0...𝑁))
62 fzosplit 13749 . . 3 (((𝑁𝑆) + 1) ∈ (0...𝑁) → (0..^𝑁) = ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁)))
631, 61, 623syl 18 . 2 (𝜑 → (0..^𝑁) = ((0..^((𝑁𝑆) + 1)) ∪ (((𝑁𝑆) + 1)..^𝑁)))
6446, 63raleqtrrdv 3338 1 (𝜑 → ∀𝑗 ∈ (0..^𝑁)if-((𝑄𝑗) = (𝑄‘(𝑗 + 1)), (𝐼‘(𝐻𝑗)) = {(𝑄𝑗)}, {(𝑄𝑗), (𝑄‘(𝑗 + 1))} ⊆ (𝐼‘(𝐻𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  if-wif 1063  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cun 3974  wss 3976  ifcif 4548  {csn 4648  {cpr 4650   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562   cyclShift ccsh 14836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-concat 14619  df-substr 14689  df-pfx 14719  df-csh 14837
This theorem is referenced by:  crctcshwlkn0  29854
  Copyright terms: Public domain W3C validator