NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dmsnn0 GIF version

Theorem dmsnn0 5065
Description: The domain of a singleton is nonzero iff the singleton argument is a set. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Scott Fenton, 19-Apr-2021.)
Assertion
Ref Expression
dmsnn0 (A V ↔ dom {A} ≠ )

Proof of Theorem dmsnn0
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2 4900 . . . 4 (x dom {A} ↔ yx, y {A})
2 vex 2863 . . . . . . . 8 x V
3 vex 2863 . . . . . . . 8 y V
42, 3opex 4589 . . . . . . 7 x, y V
54elsnc 3757 . . . . . 6 (x, y {A} ↔ x, y = A)
6 eqcom 2355 . . . . . 6 (x, y = AA = x, y)
75, 6bitri 240 . . . . 5 (x, y {A} ↔ A = x, y)
87exbii 1582 . . . 4 (yx, y {A} ↔ y A = x, y)
91, 8bitri 240 . . 3 (x dom {A} ↔ y A = x, y)
109exbii 1582 . 2 (x x dom {A} ↔ xy A = x, y)
11 n0 3560 . 2 (dom {A} ≠ x x dom {A})
12 opeqexb 4621 . 2 (A V ↔ xy A = x, y)
1310, 11, 123bitr4ri 269 1 (A V ↔ dom {A} ≠ )
Colors of variables: wff setvar class
Syntax hints:  wb 176  wex 1541   = wceq 1642   wcel 1710  wne 2517  Vcvv 2860  c0 3551  {csn 3738  cop 4562  dom cdm 4773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-ima 4728  df-cnv 4786  df-rn 4787  df-dm 4788
This theorem is referenced by:  rnsnn0  5066
  Copyright terms: Public domain W3C validator