New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elimapw12 | GIF version |
Description: Membership in an image under two unit power classes. (Contributed by set.mm contributors, 18-Mar-2015.) |
Ref | Expression |
---|---|
elimapw12 | ⊢ (A ∈ (B “ ℘1℘1C) ↔ ∃x ∈ C 〈{{x}}, A〉 ∈ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimapw1 4945 | . 2 ⊢ (A ∈ (B “ ℘1℘1C) ↔ ∃t ∈ ℘1 C〈{t}, A〉 ∈ B) | |
2 | df-rex 2621 | . . 3 ⊢ (∃t ∈ ℘1 C〈{t}, A〉 ∈ B ↔ ∃t(t ∈ ℘1C ∧ 〈{t}, A〉 ∈ B)) | |
3 | elpw1 4145 | . . . . . . 7 ⊢ (t ∈ ℘1C ↔ ∃x ∈ C t = {x}) | |
4 | 3 | anbi1i 676 | . . . . . 6 ⊢ ((t ∈ ℘1C ∧ 〈{t}, A〉 ∈ B) ↔ (∃x ∈ C t = {x} ∧ 〈{t}, A〉 ∈ B)) |
5 | r19.41v 2765 | . . . . . 6 ⊢ (∃x ∈ C (t = {x} ∧ 〈{t}, A〉 ∈ B) ↔ (∃x ∈ C t = {x} ∧ 〈{t}, A〉 ∈ B)) | |
6 | 4, 5 | bitr4i 243 | . . . . 5 ⊢ ((t ∈ ℘1C ∧ 〈{t}, A〉 ∈ B) ↔ ∃x ∈ C (t = {x} ∧ 〈{t}, A〉 ∈ B)) |
7 | 6 | exbii 1582 | . . . 4 ⊢ (∃t(t ∈ ℘1C ∧ 〈{t}, A〉 ∈ B) ↔ ∃t∃x ∈ C (t = {x} ∧ 〈{t}, A〉 ∈ B)) |
8 | rexcom4 2879 | . . . . 5 ⊢ (∃x ∈ C ∃t(t = {x} ∧ 〈{t}, A〉 ∈ B) ↔ ∃t∃x ∈ C (t = {x} ∧ 〈{t}, A〉 ∈ B)) | |
9 | snex 4112 | . . . . . . 7 ⊢ {x} ∈ V | |
10 | sneq 3745 | . . . . . . . . 9 ⊢ (t = {x} → {t} = {{x}}) | |
11 | 10 | opeq1d 4585 | . . . . . . . 8 ⊢ (t = {x} → 〈{t}, A〉 = 〈{{x}}, A〉) |
12 | 11 | eleq1d 2419 | . . . . . . 7 ⊢ (t = {x} → (〈{t}, A〉 ∈ B ↔ 〈{{x}}, A〉 ∈ B)) |
13 | 9, 12 | ceqsexv 2895 | . . . . . 6 ⊢ (∃t(t = {x} ∧ 〈{t}, A〉 ∈ B) ↔ 〈{{x}}, A〉 ∈ B) |
14 | 13 | rexbii 2640 | . . . . 5 ⊢ (∃x ∈ C ∃t(t = {x} ∧ 〈{t}, A〉 ∈ B) ↔ ∃x ∈ C 〈{{x}}, A〉 ∈ B) |
15 | 8, 14 | bitr3i 242 | . . . 4 ⊢ (∃t∃x ∈ C (t = {x} ∧ 〈{t}, A〉 ∈ B) ↔ ∃x ∈ C 〈{{x}}, A〉 ∈ B) |
16 | 7, 15 | bitri 240 | . . 3 ⊢ (∃t(t ∈ ℘1C ∧ 〈{t}, A〉 ∈ B) ↔ ∃x ∈ C 〈{{x}}, A〉 ∈ B) |
17 | 2, 16 | bitri 240 | . 2 ⊢ (∃t ∈ ℘1 C〈{t}, A〉 ∈ B ↔ ∃x ∈ C 〈{{x}}, A〉 ∈ B) |
18 | 1, 17 | bitri 240 | 1 ⊢ (A ∈ (B “ ℘1℘1C) ↔ ∃x ∈ C 〈{{x}}, A〉 ∈ B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 {csn 3738 ℘1cpw1 4136 〈cop 4562 “ cima 4723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-br 4641 df-ima 4728 |
This theorem is referenced by: elimapw13 4947 |
Copyright terms: Public domain | W3C validator |