Proof of Theorem imaexg
Step | Hyp | Ref
| Expression |
1 | | dfima2 4746 |
. 2
⊢ (A “ B) =
((((V ×k (V ×k V)) ∩ ∼
(( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) “k B) |
2 | | pw1exg 4303 |
. . . 4
⊢ (A ∈ V → ℘1A ∈
V) |
3 | | pw1exg 4303 |
. . . 4
⊢ (℘1A ∈ V → ℘1℘1A ∈
V) |
4 | | vvex 4110 |
. . . . . . 7
⊢ V ∈ V |
5 | 4, 4 | xpkex 4290 |
. . . . . . 7
⊢ (V
×k V) ∈
V |
6 | 4, 5 | xpkex 4290 |
. . . . . 6
⊢ (V
×k (V ×k V)) ∈ V |
7 | | setconslem5 4736 |
. . . . . 6
⊢ ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) ∈
V |
8 | 6, 7 | inex 4106 |
. . . . 5
⊢ ((V
×k (V ×k V)) ∩ ∼ ((
Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) ∈
V |
9 | | imakexg 4300 |
. . . . 5
⊢ ((((V
×k (V ×k V)) ∩ ∼ ((
Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) ∈ V
∧ ℘1℘1A ∈ V) → (((V ×k (V ×k V))
∩ ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k
( Ins3k ( Sk
∘k SIk
◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) ∈ V) |
10 | 8, 9 | mpan 651 |
. . . 4
⊢ (℘1℘1A ∈ V → (((V
×k (V ×k V)) ∩ ∼ ((
Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) ∈ V) |
11 | 2, 3, 10 | 3syl 18 |
. . 3
⊢ (A ∈ V → (((V ×k (V
×k V)) ∩ ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) ∈ V) |
12 | | imakexg 4300 |
. . 3
⊢ (((((V
×k (V ×k V)) ∩ ∼ ((
Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) ∈ V ∧
B ∈ W) → ((((V ×k (V ×k V))
∩ ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k
( Ins3k ( Sk
∘k SIk
◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) “k B) ∈ V) |
13 | 11, 12 | sylan 457 |
. 2
⊢ ((A ∈ V ∧ B ∈ W) → ((((V ×k (V
×k V)) ∩ ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) “k B) ∈ V) |
14 | 1, 13 | syl5eqel 2437 |
1
⊢ ((A ∈ V ∧ B ∈ W) → (A
“ B) ∈ V) |