NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  proj1exg GIF version

Theorem proj1exg 4591
Description: The first projection of a set is a set. (Contributed by SF, 2-Jan-2015.)
Assertion
Ref Expression
proj1exg (A V Proj1 A V)

Proof of Theorem proj1exg
StepHypRef Expression
1 dfproj12 4576 . 2 Proj1 A = (kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k A)
2 addcexlem 4382 . . . . . . . . 9 ( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) V
3 1cex 4142 . . . . . . . . . . 11 1c V
43pw1ex 4303 . . . . . . . . . 10 11c V
54pw1ex 4303 . . . . . . . . 9 111c V
62, 5imakex 4300 . . . . . . . 8 (( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) V
76imagekex 4312 . . . . . . 7 Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) V
8 nncex 4396 . . . . . . . 8 Nn V
9 vvex 4109 . . . . . . . 8 V V
108, 9xpkex 4289 . . . . . . 7 ( Nn ×k V) V
117, 10inex 4105 . . . . . 6 (Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) V
12 idkex 4314 . . . . . . 7 Ik V
138complex 4104 . . . . . . . 8 Nn V
1413, 9xpkex 4289 . . . . . . 7 ( ∼ Nn ×k V) V
1512, 14inex 4105 . . . . . 6 ( Ik ∩ ( ∼ Nn ×k V)) V
1611, 15unex 4106 . . . . 5 ((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) V
1716imagekex 4312 . . . 4 Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) V
1817cnvkex 4287 . . 3 kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) V
19 imakexg 4299 . . 3 ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) V A V) → (kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k A) V)
2018, 19mpan 651 . 2 (A V → (kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k A) V)
211, 20syl5eqel 2437 1 (A V Proj1 A V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  Vcvv 2859  ccompl 3205   cdif 3206  cun 3207  cin 3208  csymdif 3209  1cc1c 4134  1cpw1 4135   ×k cxpk 4174  kccnvk 4175   Ins2k cins2k 4176   Ins3k cins3k 4177  k cimak 4179   SIk csik 4181  Imagekcimagek 4182   Sk cssetk 4183   Ik cidk 4184   Nn cnnc 4373   Proj1 cproj1 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-addc 4378  df-nnc 4379  df-phi 4565  df-proj1 4567
This theorem is referenced by:  proj1ex  4593  opexb  4603
  Copyright terms: Public domain W3C validator