MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq Structured version   Visualization version   GIF version

Theorem bernneq 13580
Description: Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
bernneq ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))

Proof of Theorem bernneq
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7150 . . . . . . 7 (𝑗 = 0 → (𝐴 · 𝑗) = (𝐴 · 0))
21oveq2d 7158 . . . . . 6 (𝑗 = 0 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 0)))
3 oveq2 7150 . . . . . 6 (𝑗 = 0 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑0))
42, 3breq12d 5065 . . . . 5 (𝑗 = 0 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0)))
54imbi2d 343 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))))
6 oveq2 7150 . . . . . . 7 (𝑗 = 𝑘 → (𝐴 · 𝑗) = (𝐴 · 𝑘))
76oveq2d 7158 . . . . . 6 (𝑗 = 𝑘 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 𝑘)))
8 oveq2 7150 . . . . . 6 (𝑗 = 𝑘 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑𝑘))
97, 8breq12d 5065 . . . . 5 (𝑗 = 𝑘 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘)))
109imbi2d 343 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))))
11 oveq2 7150 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴 · 𝑗) = (𝐴 · (𝑘 + 1)))
1211oveq2d 7158 . . . . . 6 (𝑗 = (𝑘 + 1) → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · (𝑘 + 1))))
13 oveq2 7150 . . . . . 6 (𝑗 = (𝑘 + 1) → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑(𝑘 + 1)))
1412, 13breq12d 5065 . . . . 5 (𝑗 = (𝑘 + 1) → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))
1514imbi2d 343 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
16 oveq2 7150 . . . . . . 7 (𝑗 = 𝑁 → (𝐴 · 𝑗) = (𝐴 · 𝑁))
1716oveq2d 7158 . . . . . 6 (𝑗 = 𝑁 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 𝑁)))
18 oveq2 7150 . . . . . 6 (𝑗 = 𝑁 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑𝑁))
1917, 18breq12d 5065 . . . . 5 (𝑗 = 𝑁 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁)))
2019imbi2d 343 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
21 recn 10613 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
22 mul01 10805 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
2322oveq2d 7158 . . . . . . . 8 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = (1 + 0))
24 1p0e1 11748 . . . . . . . 8 (1 + 0) = 1
2523, 24syl6eq 2872 . . . . . . 7 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = 1)
26 1le1 11254 . . . . . . . 8 1 ≤ 1
27 ax-1cn 10581 . . . . . . . . . 10 1 ∈ ℂ
28 addcl 10605 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ)
2927, 28mpan 688 . . . . . . . . 9 (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ)
30 exp0 13423 . . . . . . . . 9 ((1 + 𝐴) ∈ ℂ → ((1 + 𝐴)↑0) = 1)
3129, 30syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 + 𝐴)↑0) = 1)
3226, 31breqtrrid 5090 . . . . . . 7 (𝐴 ∈ ℂ → 1 ≤ ((1 + 𝐴)↑0))
3325, 32eqbrtrd 5074 . . . . . 6 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
3421, 33syl 17 . . . . 5 (𝐴 ∈ ℝ → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
3534adantr 483 . . . 4 ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
36 1re 10627 . . . . . . . . . . . . 13 1 ∈ ℝ
37 nn0re 11893 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
38 remulcl 10608 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 · 𝑘) ∈ ℝ)
3937, 38sylan2 594 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴 · 𝑘) ∈ ℝ)
40 readdcl 10606 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ (𝐴 · 𝑘) ∈ ℝ) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
4136, 39, 40sylancr 589 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
42 simpl 485 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
43 readdcl 10606 . . . . . . . . . . . 12 (((1 + (𝐴 · 𝑘)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
4441, 42, 43syl2anc 586 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
4544adantr 483 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
46 readdcl 10606 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 + 𝐴) ∈ ℝ)
4736, 46mpan 688 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℝ)
4847adantr 483 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + 𝐴) ∈ ℝ)
4941, 48remulcld 10657 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ∈ ℝ)
5049adantr 483 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ∈ ℝ)
51 reexpcl 13436 . . . . . . . . . . . . 13 (((1 + 𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
5247, 51sylan 582 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
5352, 48remulcld 10657 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((1 + 𝐴)↑𝑘) · (1 + 𝐴)) ∈ ℝ)
5453adantr 483 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (((1 + 𝐴)↑𝑘) · (1 + 𝐴)) ∈ ℝ)
55 remulcl 10608 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
5655anidms 569 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
57 msqge0 11147 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
5856, 57jca 514 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐴)))
59 nn0ge0 11909 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
6037, 59jca 514 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
61 mulge0 11144 . . . . . . . . . . . . . . 15 ((((𝐴 · 𝐴) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐴)) ∧ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘)) → 0 ≤ ((𝐴 · 𝐴) · 𝑘))
6258, 60, 61syl2an 597 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝐴 · 𝐴) · 𝑘))
6321adantr 483 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
64 nn0cn 11894 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
6564adantl 484 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
6663, 63, 65mul32d 10836 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐴) · 𝑘) = ((𝐴 · 𝑘) · 𝐴))
6762, 66breqtrd 5078 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝐴 · 𝑘) · 𝐴))
68 simpl 485 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → 𝐴 ∈ ℝ)
6938, 68remulcld 10657 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 · 𝑘) · 𝐴) ∈ ℝ)
7037, 69sylan2 594 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝑘) · 𝐴) ∈ ℝ)
7144, 70addge01d 11214 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (0 ≤ ((𝐴 · 𝑘) · 𝐴) ↔ ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴))))
7267, 71mpbid 234 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)))
73 mulcl 10607 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 𝑘) ∈ ℂ)
74 addcl 10605 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐴 · 𝑘) ∈ ℂ) → (1 + (𝐴 · 𝑘)) ∈ ℂ)
7527, 73, 74sylancr 589 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · 𝑘)) ∈ ℂ)
76 simpl 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → 𝐴 ∈ ℂ)
7773, 76mulcld 10647 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) · 𝐴) ∈ ℂ)
7875, 76, 77addassd 10649 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
79 muladd11 10796 . . . . . . . . . . . . . . 15 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
8073, 76, 79syl2anc 586 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
8178, 80eqtr4d 2859 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8221, 64, 81syl2an 597 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8372, 82breqtrd 5078 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8483adantr 483 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8541adantr 483 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
8652adantr 483 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
8748adantr 483 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + 𝐴) ∈ ℝ)
88 neg1rr 11739 . . . . . . . . . . . . . . 15 -1 ∈ ℝ
89 leadd2 11095 . . . . . . . . . . . . . . 15 ((-1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ 𝐴 ↔ (1 + -1) ≤ (1 + 𝐴)))
9088, 36, 89mp3an13 1448 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (-1 ≤ 𝐴 ↔ (1 + -1) ≤ (1 + 𝐴)))
91 1pneg1e0 11743 . . . . . . . . . . . . . . 15 (1 + -1) = 0
9291breq1i 5059 . . . . . . . . . . . . . 14 ((1 + -1) ≤ (1 + 𝐴) ↔ 0 ≤ (1 + 𝐴))
9390, 92syl6bb 289 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → (-1 ≤ 𝐴 ↔ 0 ≤ (1 + 𝐴)))
9493biimpa 479 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → 0 ≤ (1 + 𝐴))
9594ad2ant2r 745 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → 0 ≤ (1 + 𝐴))
96 simprr 771 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))
9785, 86, 87, 95, 96lemul1ad 11565 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ≤ (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
9845, 50, 54, 84, 97letrd 10783 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
99 adddi 10612 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
10027, 99mp3an3 1446 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
101 mulid1 10625 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
102101adantr 483 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 1) = 𝐴)
103102oveq2d 7158 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) + (𝐴 · 1)) = ((𝐴 · 𝑘) + 𝐴))
104100, 103eqtrd 2856 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
105104oveq2d 7158 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · (𝑘 + 1))) = (1 + ((𝐴 · 𝑘) + 𝐴)))
106 addass 10610 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
10727, 73, 76, 106mp3an2i 1462 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
108105, 107eqtr4d 2859 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
10921, 64, 108syl2an 597 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
110109adantr 483 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
11127, 21, 28sylancr 589 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℂ)
112 expp1 13426 . . . . . . . . . . 11 (((1 + 𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
113111, 112sylan 582 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
114113adantr 483 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
11598, 110, 1143brtr4d 5084 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))
116115exp43 439 . . . . . . 7 (𝐴 ∈ ℝ → (𝑘 ∈ ℕ0 → (-1 ≤ 𝐴 → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))))
117116com12 32 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐴 ∈ ℝ → (-1 ≤ 𝐴 → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))))
118117impd 413 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
119118a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘)) → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
1205, 10, 15, 20, 35, 119nn0ind 12064 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁)))
121120expd 418 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℝ → (-1 ≤ 𝐴 → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
1221213imp21 1110 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5052  (class class class)co 7142  cc 10521  cr 10522  0cc0 10523  1c1 10524   + caddc 10526   · cmul 10528  cle 10662  -cneg 10857  0cn0 11884  cexp 13419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-n0 11885  df-z 11969  df-uz 12231  df-seq 13360  df-exp 13420
This theorem is referenced by:  bernneq2  13581  stoweidlem1  42376  stoweidlem10  42385  stoweidlem42  42417
  Copyright terms: Public domain W3C validator