MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlema Structured version   Visualization version   GIF version

Theorem dchrvmasumlema 24902
Description: Lemma for dchrvmasum 24927 and dchrvmasumif 24905. Apply dchrisum 24894 for the function log(𝑦) / 𝑦, which is decreasing above e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumlema.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
Assertion
Ref Expression
dchrvmasumlema (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))))
Distinct variable groups:   𝑡,𝑐,𝑦, 1   𝐹,𝑐,𝑡,𝑦   𝑎,𝑐,𝑡,𝑦   𝑁,𝑐,𝑡,𝑦   𝜑,𝑐,𝑡   𝑦,𝑍   𝐷,𝑐,𝑡,𝑦   𝐿,𝑎,𝑐,𝑡,𝑦   𝑋,𝑎,𝑐,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐷(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑡,𝑎,𝑐)   𝑁(𝑎)   𝑍(𝑡,𝑎,𝑐)

Proof of Theorem dchrvmasumlema
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.g . . 3 𝐺 = (DChr‘𝑁)
5 rpvmasum.d . . 3 𝐷 = (Base‘𝐺)
6 rpvmasum.1 . . 3 1 = (0g𝐺)
7 dchrisum.b . . 3 (𝜑𝑋𝐷)
8 dchrisum.n1 . . 3 (𝜑𝑋1 )
9 fveq2 6084 . . . 4 (𝑛 = 𝑥 → (log‘𝑛) = (log‘𝑥))
10 id 22 . . . 4 (𝑛 = 𝑥𝑛 = 𝑥)
119, 10oveq12d 6541 . . 3 (𝑛 = 𝑥 → ((log‘𝑛) / 𝑛) = ((log‘𝑥) / 𝑥))
12 3nn 11029 . . . 4 3 ∈ ℕ
1312a1i 11 . . 3 (𝜑 → 3 ∈ ℕ)
14 relogcl 24039 . . . . 5 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
15 rerpdivcl 11689 . . . . 5 (((log‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((log‘𝑛) / 𝑛) ∈ ℝ)
1614, 15mpancom 699 . . . 4 (𝑛 ∈ ℝ+ → ((log‘𝑛) / 𝑛) ∈ ℝ)
1716adantl 480 . . 3 ((𝜑𝑛 ∈ ℝ+) → ((log‘𝑛) / 𝑛) ∈ ℝ)
18 simp3r 1082 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 𝑛𝑥)
19 simp2l 1079 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 𝑛 ∈ ℝ+)
2019rpred 11700 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 𝑛 ∈ ℝ)
21 ere 14600 . . . . . . 7 e ∈ ℝ
2221a1i 11 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → e ∈ ℝ)
23 3re 10937 . . . . . . 7 3 ∈ ℝ
2423a1i 11 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 3 ∈ ℝ)
25 egt2lt3 14715 . . . . . . . . 9 (2 < e ∧ e < 3)
2625simpri 476 . . . . . . . 8 e < 3
2721, 23, 26ltleii 10007 . . . . . . 7 e ≤ 3
2827a1i 11 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → e ≤ 3)
29 simp3l 1081 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 3 ≤ 𝑛)
3022, 24, 20, 28, 29letrd 10041 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → e ≤ 𝑛)
31 simp2r 1080 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 𝑥 ∈ ℝ+)
3231rpred 11700 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → 𝑥 ∈ ℝ)
3322, 20, 32, 30, 18letrd 10041 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → e ≤ 𝑥)
34 logdivle 24085 . . . . 5 (((𝑛 ∈ ℝ ∧ e ≤ 𝑛) ∧ (𝑥 ∈ ℝ ∧ e ≤ 𝑥)) → (𝑛𝑥 ↔ ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛)))
3520, 30, 32, 33, 34syl22anc 1318 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → (𝑛𝑥 ↔ ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛)))
3618, 35mpbid 220 . . 3 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (3 ≤ 𝑛𝑛𝑥)) → ((log‘𝑥) / 𝑥) ≤ ((log‘𝑛) / 𝑛))
37 rpcn 11669 . . . . . . 7 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
3837cxp1d 24165 . . . . . 6 (𝑛 ∈ ℝ+ → (𝑛𝑐1) = 𝑛)
3938oveq2d 6539 . . . . 5 (𝑛 ∈ ℝ+ → ((log‘𝑛) / (𝑛𝑐1)) = ((log‘𝑛) / 𝑛))
4039mpteq2ia 4658 . . . 4 (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐1))) = (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / 𝑛))
41 1rp 11664 . . . . 5 1 ∈ ℝ+
42 cxploglim 24417 . . . . 5 (1 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐1))) ⇝𝑟 0)
4341, 42mp1i 13 . . . 4 (𝜑 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛𝑐1))) ⇝𝑟 0)
4440, 43syl5eqbrr 4609 . . 3 (𝜑 → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / 𝑛)) ⇝𝑟 0)
45 dchrvmasumlema.f . . . 4 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
46 fveq2 6084 . . . . . . 7 (𝑎 = 𝑛 → (𝐿𝑎) = (𝐿𝑛))
4746fveq2d 6088 . . . . . 6 (𝑎 = 𝑛 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑛)))
48 fveq2 6084 . . . . . . 7 (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛))
49 id 22 . . . . . . 7 (𝑎 = 𝑛𝑎 = 𝑛)
5048, 49oveq12d 6541 . . . . . 6 (𝑎 = 𝑛 → ((log‘𝑎) / 𝑎) = ((log‘𝑛) / 𝑛))
5147, 50oveq12d 6541 . . . . 5 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)) = ((𝑋‘(𝐿𝑛)) · ((log‘𝑛) / 𝑛)))
5251cbvmptv 4668 . . . 4 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · ((log‘𝑛) / 𝑛)))
5345, 52eqtri 2627 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · ((log‘𝑛) / 𝑛)))
541, 2, 3, 4, 5, 6, 7, 8, 11, 13, 17, 36, 44, 53dchrisum 24894 . 2 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))))
55 fveq2 6084 . . . . . . . . . 10 (𝑥 = 𝑦 → (⌊‘𝑥) = (⌊‘𝑦))
5655fveq2d 6088 . . . . . . . . 9 (𝑥 = 𝑦 → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , 𝐹)‘(⌊‘𝑦)))
5756oveq1d 6538 . . . . . . . 8 (𝑥 = 𝑦 → ((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡) = ((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡))
5857fveq2d 6088 . . . . . . 7 (𝑥 = 𝑦 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)))
59 fveq2 6084 . . . . . . . . 9 (𝑥 = 𝑦 → (log‘𝑥) = (log‘𝑦))
60 id 22 . . . . . . . . 9 (𝑥 = 𝑦𝑥 = 𝑦)
6159, 60oveq12d 6541 . . . . . . . 8 (𝑥 = 𝑦 → ((log‘𝑥) / 𝑥) = ((log‘𝑦) / 𝑦))
6261oveq2d 6539 . . . . . . 7 (𝑥 = 𝑦 → (𝑐 · ((log‘𝑥) / 𝑥)) = (𝑐 · ((log‘𝑦) / 𝑦)))
6358, 62breq12d 4586 . . . . . 6 (𝑥 = 𝑦 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))))
6463cbvralv 3142 . . . . 5 (∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥)) ↔ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))
6564anbi2i 725 . . . 4 ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ (seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))))
6665rexbii 3018 . . 3 (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))))
6766exbii 1762 . 2 (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · ((log‘𝑥) / 𝑥))) ↔ ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))))
6854, 67sylib 206 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wex 1694  wcel 1975  wne 2775  wral 2891  wrex 2892   class class class wbr 4573  cmpt 4633  cfv 5786  (class class class)co 6523  cr 9787  0cc0 9788  1c1 9789   + caddc 9791   · cmul 9793  +∞cpnf 9923   < clt 9926  cle 9927  cmin 10113   / cdiv 10529  cn 10863  2c2 10913  3c3 10914  +crp 11660  [,)cico 12000  cfl 12404  seqcseq 12614  abscabs 13764  cli 14005  𝑟 crli 14006  eceu 14574  Basecbs 15637  0gc0g 15865  ℤRHomczrh 19608  ℤ/nczn 19611  logclog 24018  𝑐ccxp 24019  DChrcdchr 24670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866  ax-addf 9867  ax-mulf 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-tpos 7212  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-ec 7604  df-qs 7608  df-map 7719  df-pm 7720  df-ixp 7768  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-fi 8173  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-q 11617  df-rp 11661  df-xneg 11774  df-xadd 11775  df-xmul 11776  df-ioo 12002  df-ioc 12003  df-ico 12004  df-icc 12005  df-fz 12149  df-fzo 12286  df-fl 12406  df-mod 12482  df-seq 12615  df-exp 12674  df-fac 12874  df-bc 12903  df-hash 12931  df-shft 13597  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-limsup 13992  df-clim 14009  df-rlim 14010  df-sum 14207  df-ef 14579  df-e 14580  df-sin 14581  df-cos 14582  df-pi 14584  df-dvds 14764  df-gcd 14997  df-phi 15251  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-ip 15728  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-hom 15735  df-cco 15736  df-rest 15848  df-topn 15849  df-0g 15867  df-gsum 15868  df-topgen 15869  df-pt 15870  df-prds 15873  df-xrs 15927  df-qtop 15932  df-imas 15933  df-qus 15934  df-xps 15935  df-mre 16011  df-mrc 16012  df-acs 16014  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-mhm 17100  df-submnd 17101  df-grp 17190  df-minusg 17191  df-sbg 17192  df-mulg 17306  df-subg 17356  df-nsg 17357  df-eqg 17358  df-ghm 17423  df-cntz 17515  df-cmn 17960  df-abl 17961  df-mgp 18255  df-ur 18267  df-ring 18314  df-cring 18315  df-oppr 18388  df-dvdsr 18406  df-unit 18407  df-invr 18437  df-rnghom 18480  df-subrg 18543  df-lmod 18630  df-lss 18696  df-lsp 18735  df-sra 18935  df-rgmod 18936  df-lidl 18937  df-rsp 18938  df-2idl 18995  df-psmet 19501  df-xmet 19502  df-met 19503  df-bl 19504  df-mopn 19505  df-fbas 19506  df-fg 19507  df-cnfld 19510  df-zring 19580  df-zrh 19612  df-zn 19615  df-top 20459  df-bases 20460  df-topon 20461  df-topsp 20462  df-cld 20571  df-ntr 20572  df-cls 20573  df-nei 20650  df-lp 20688  df-perf 20689  df-cn 20779  df-cnp 20780  df-haus 20867  df-tx 21113  df-hmeo 21306  df-fil 21398  df-fm 21490  df-flim 21491  df-flf 21492  df-xms 21872  df-ms 21873  df-tms 21874  df-cncf 22416  df-limc 23349  df-dv 23350  df-log 24020  df-cxp 24021  df-dchr 24671
This theorem is referenced by:  dchrvmasumif  24905
  Copyright terms: Public domain W3C validator