MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvreslem Structured version   Visualization version   GIF version

Theorem dvreslem 23718
Description: Lemma for dvres 23720. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
dvres.g 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
dvres.s (𝜑𝑆 ⊆ ℂ)
dvres.f (𝜑𝐹:𝐴⟶ℂ)
dvres.a (𝜑𝐴𝑆)
dvres.b (𝜑𝐵𝑆)
dvres.y (𝜑𝑦 ∈ ℂ)
Assertion
Ref Expression
dvreslem (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑧,𝐾   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧)   𝐾(𝑥,𝑦)

Proof of Theorem dvreslem
StepHypRef Expression
1 difss 3770 . . . . . . . . . . . . . . 15 ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴𝐵)
2 inss2 3867 . . . . . . . . . . . . . . 15 (𝐴𝐵) ⊆ 𝐵
31, 2sstri 3645 . . . . . . . . . . . . . 14 ((𝐴𝐵) ∖ {𝑥}) ⊆ 𝐵
4 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}))
53, 4sseldi 3634 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → 𝑧𝐵)
6 fvres 6245 . . . . . . . . . . . . 13 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
75, 6syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
8 dvres.t . . . . . . . . . . . . . . . . . 18 𝑇 = (𝐾t 𝑆)
9 dvres.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (TopOpen‘ℂfld)
109cnfldtop 22634 . . . . . . . . . . . . . . . . . . 19 𝐾 ∈ Top
11 dvres.s . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ⊆ ℂ)
12 cnex 10055 . . . . . . . . . . . . . . . . . . . 20 ℂ ∈ V
13 ssexg 4837 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1411, 12, 13sylancl 695 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 ∈ V)
15 resttop 21012 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
1610, 14, 15sylancr 696 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾t 𝑆) ∈ Top)
178, 16syl5eqel 2734 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ Top)
18 inss1 3866 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐵) ⊆ 𝐴
19 dvres.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴𝑆)
2018, 19syl5ss 3647 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐵) ⊆ 𝑆)
219cnfldtopon 22633 . . . . . . . . . . . . . . . . . . . . 21 𝐾 ∈ (TopOn‘ℂ)
22 resttopon 21013 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2321, 11, 22sylancr 696 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
248, 23syl5eqel 2734 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ (TopOn‘𝑆))
25 toponuni 20767 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ (TopOn‘𝑆) → 𝑆 = 𝑇)
2624, 25syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 = 𝑇)
2720, 26sseqtrd 3674 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴𝐵) ⊆ 𝑇)
28 eqid 2651 . . . . . . . . . . . . . . . . . 18 𝑇 = 𝑇
2928ntrss2 20909 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ Top ∧ (𝐴𝐵) ⊆ 𝑇) → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (𝐴𝐵))
3017, 27, 29syl2anc 694 . . . . . . . . . . . . . . . 16 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (𝐴𝐵))
3130, 2syl6ss 3648 . . . . . . . . . . . . . . 15 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ 𝐵)
3231sselda 3636 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥𝐵)
33 fvres 6245 . . . . . . . . . . . . . 14 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
3432, 33syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
3534adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
367, 35oveq12d 6708 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → (((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
3736oveq1d 6705 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
3837mpteq2dva 4777 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
39 dvres.g . . . . . . . . . . 11 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4039reseq1i 5424 . . . . . . . . . 10 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥}))
41 ssdif 3778 . . . . . . . . . . 11 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
42 resmpt 5484 . . . . . . . . . . 11 (((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}) → ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
4318, 41, 42mp2b 10 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4440, 43eqtri 2673 . . . . . . . . 9 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4538, 44syl6eqr 2703 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})))
4645oveq1d 6705 . . . . . . 7 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
47 dvres.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℂ)
4847adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐹:𝐴⟶ℂ)
4919, 11sstrd 3646 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
5049adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐴 ⊆ ℂ)
5130, 18syl6ss 3648 . . . . . . . . . . 11 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ 𝐴)
5251sselda 3636 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥𝐴)
5348, 50, 52dvlem 23705 . . . . . . . . 9 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ (𝐴 ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) ∈ ℂ)
5453, 39fmptd 6425 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐺:(𝐴 ∖ {𝑥})⟶ℂ)
5518, 41mp1i 13 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
56 difss 3770 . . . . . . . . 9 (𝐴 ∖ {𝑥}) ⊆ 𝐴
5756, 50syl5ss 3647 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐴 ∖ {𝑥}) ⊆ ℂ)
58 eqid 2651 . . . . . . . 8 (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})) = (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
59 difssd 3771 . . . . . . . . . . . . . 14 (𝜑 → ( 𝑇𝐴) ⊆ 𝑇)
6027, 59unssd 3822 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐵) ∪ ( 𝑇𝐴)) ⊆ 𝑇)
61 ssun1 3809 . . . . . . . . . . . . . 14 (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴))
6261a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴)))
6328ntrss 20907 . . . . . . . . . . . . 13 ((𝑇 ∈ Top ∧ ((𝐴𝐵) ∪ ( 𝑇𝐴)) ⊆ 𝑇 ∧ (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴))) → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))))
6417, 60, 62, 63syl3anc 1366 . . . . . . . . . . . 12 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))))
6564, 51ssind 3870 . . . . . . . . . . 11 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
6619, 26sseqtrd 3674 . . . . . . . . . . . . 13 (𝜑𝐴 𝑇)
6718a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
68 eqid 2651 . . . . . . . . . . . . . 14 (𝑇t 𝐴) = (𝑇t 𝐴)
6928, 68restntr 21034 . . . . . . . . . . . . 13 ((𝑇 ∈ Top ∧ 𝐴 𝑇 ∧ (𝐴𝐵) ⊆ 𝐴) → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
7017, 66, 67, 69syl3anc 1366 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
718oveq1i 6700 . . . . . . . . . . . . . . 15 (𝑇t 𝐴) = ((𝐾t 𝑆) ↾t 𝐴)
7210a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Top)
73 restabs 21017 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Top ∧ 𝐴𝑆𝑆 ∈ V) → ((𝐾t 𝑆) ↾t 𝐴) = (𝐾t 𝐴))
7472, 19, 14, 73syl3anc 1366 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾t 𝑆) ↾t 𝐴) = (𝐾t 𝐴))
7571, 74syl5eq 2697 . . . . . . . . . . . . . 14 (𝜑 → (𝑇t 𝐴) = (𝐾t 𝐴))
7675fveq2d 6233 . . . . . . . . . . . . 13 (𝜑 → (int‘(𝑇t 𝐴)) = (int‘(𝐾t 𝐴)))
7776fveq1d 6231 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
7870, 77eqtr3d 2687 . . . . . . . . . . 11 (𝜑 → (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
7965, 78sseqtrd 3674 . . . . . . . . . 10 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
8079sselda 3636 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
81 undif1 4076 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥})
8230sselda 3636 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ (𝐴𝐵))
8382snssd 4372 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → {𝑥} ⊆ (𝐴𝐵))
8483, 18syl6ss 3648 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → {𝑥} ⊆ 𝐴)
85 ssequn2 3819 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑥}) = 𝐴)
8684, 85sylib 208 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐴 ∪ {𝑥}) = 𝐴)
8781, 86syl5eq 2697 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
8887oveq2d 6706 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})) = (𝐾t 𝐴))
8988fveq2d 6233 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥}))) = (int‘(𝐾t 𝐴)))
90 undif1 4076 . . . . . . . . . . 11 (((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥}) = ((𝐴𝐵) ∪ {𝑥})
91 ssequn2 3819 . . . . . . . . . . . 12 ({𝑥} ⊆ (𝐴𝐵) ↔ ((𝐴𝐵) ∪ {𝑥}) = (𝐴𝐵))
9283, 91sylib 208 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴𝐵) ∪ {𝑥}) = (𝐴𝐵))
9390, 92syl5eq 2697 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥}) = (𝐴𝐵))
9489, 93fveq12d 6235 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})))‘(((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥})) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
9580, 94eleqtrrd 2733 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ ((int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})))‘(((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥})))
9654, 55, 57, 9, 58, 95limcres 23695 . . . . . . 7 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥) = (𝐺 lim 𝑥))
9746, 96eqtrd 2685 . . . . . 6 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = (𝐺 lim 𝑥))
9897eleq2d 2716 . . . . 5 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) ↔ 𝑦 ∈ (𝐺 lim 𝑥)))
9998pm5.32da 674 . . . 4 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
100 dvres.b . . . . . . . . 9 (𝜑𝐵𝑆)
101100, 26sseqtrd 3674 . . . . . . . 8 (𝜑𝐵 𝑇)
10228ntrin 20913 . . . . . . . 8 ((𝑇 ∈ Top ∧ 𝐴 𝑇𝐵 𝑇) → ((int‘𝑇)‘(𝐴𝐵)) = (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)))
10317, 66, 101, 102syl3anc 1366 . . . . . . 7 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) = (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)))
104103eleq2d 2716 . . . . . 6 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ↔ 𝑥 ∈ (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵))))
105 elin 3829 . . . . . 6 (𝑥 ∈ (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)) ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))
106104, 105syl6bb 276 . . . . 5 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
107106anbi1d 741 . . . 4 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
10899, 107bitrd 268 . . 3 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
109 an32 856 . . 3 (((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))
110108, 109syl6bb 276 . 2 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
111 eqid 2651 . . 3 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)))
112 fresin 6111 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
11347, 112syl 17 . . 3 (𝜑 → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
1148, 9, 111, 11, 113, 20eldv 23707 . 2 (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))))
1158, 9, 39, 11, 47, 19eldv 23707 . . 3 (𝜑 → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
116115anbi1d 741 . 2 (𝜑 → ((𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
117110, 114, 1163bitr4d 300 1 (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cdif 3604  cun 3605  cin 3606  wss 3607  {csn 4210   cuni 4468   class class class wbr 4685  cmpt 4762  cres 5145  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cmin 10304   / cdiv 10722  t crest 16128  TopOpenctopn 16129  fldccnfld 19794  Topctop 20746  TopOnctopon 20763  intcnt 20869   lim climc 23671   D cdv 23672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-cnp 21080  df-xms 22172  df-ms 22173  df-limc 23675  df-dv 23676
This theorem is referenced by:  dvres  23720
  Copyright terms: Public domain W3C validator