MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres Structured version   Visualization version   GIF version

Theorem dvres 23581
Description: Restriction of a derivative. Note that our definition of derivative df-dv 23537 would still make sense if we demanded that 𝑥 be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point 𝑥 when restricted to different subsets containing 𝑥; a classic example is the absolute value function restricted to [0, +∞) and (-∞, 0]. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
Assertion
Ref Expression
dvres (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑆 D (𝐹𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)))

Proof of Theorem dvres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldv 23540 . 2 Rel (𝑆 D (𝐹𝐵))
2 relres 5385 . 2 Rel ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))
3 simpll 789 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝑆 ⊆ ℂ)
4 simplr 791 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝐹:𝐴⟶ℂ)
5 inss1 3811 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
6 fssres 6027 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ)
74, 5, 6sylancl 693 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ)
8 resres 5368 . . . . . . . . 9 ((𝐹𝐴) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵))
9 ffn 6002 . . . . . . . . . . 11 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
10 fnresdm 5958 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
114, 9, 103syl 18 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹𝐴) = 𝐹)
1211reseq1d 5355 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝐹𝐴) ↾ 𝐵) = (𝐹𝐵))
138, 12syl5eqr 2669 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹 ↾ (𝐴𝐵)) = (𝐹𝐵))
1413feq1d 5987 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶ℂ ↔ (𝐹𝐵):(𝐴𝐵)⟶ℂ))
157, 14mpbid 222 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
16 simprl 793 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → 𝐴𝑆)
175, 16syl5ss 3594 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝐵) ⊆ 𝑆)
183, 15, 17dvcl 23569 . . . . 5 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑥(𝑆 D (𝐹𝐵))𝑦) → 𝑦 ∈ ℂ)
1918ex 450 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦𝑦 ∈ ℂ))
203, 4, 16dvcl 23569 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
2120ex 450 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
2221adantrd 484 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵)) → 𝑦 ∈ ℂ))
23 dvres.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
24 dvres.t . . . . . 6 𝑇 = (𝐾t 𝑆)
25 eqid 2621 . . . . . 6 (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
263adantr 481 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑆 ⊆ ℂ)
274adantr 481 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐹:𝐴⟶ℂ)
2816adantr 481 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐴𝑆)
29 simplrr 800 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝐵𝑆)
30 simpr 477 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
3123, 24, 25, 26, 27, 28, 29, 30dvreslem 23579 . . . . 5 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) ∧ 𝑦 ∈ ℂ) → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵))))
3231ex 450 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑦 ∈ ℂ → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵)))))
3319, 22, 32pm5.21ndd 369 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵))))
34 vex 3189 . . . 4 𝑦 ∈ V
3534brres 5362 . . 3 (𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦 ↔ (𝑥(𝑆 D 𝐹)𝑦𝑥 ∈ ((int‘𝑇)‘𝐵)))
3633, 35syl6bbr 278 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑥(𝑆 D (𝐹𝐵))𝑦𝑥((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵))𝑦))
371, 2, 36eqbrrdiv 5179 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (𝑆 D (𝐹𝐵)) = ((𝑆 D 𝐹) ↾ ((int‘𝑇)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  cdif 3552  cin 3554  wss 3555  {csn 4148   class class class wbr 4613  cmpt 4673  cres 5076   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cmin 10210   / cdiv 10628  t crest 16002  TopOpenctopn 16003  fldccnfld 19665  intcnt 20731   D cdv 23533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-topn 16005  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-cnp 20942  df-xms 22035  df-ms 22036  df-limc 23536  df-dv 23537
This theorem is referenced by:  dvcmulf  23614  dvmptres2  23631  dvmptntr  23640  dvlip  23660  dvlipcn  23661  dvlip2  23662  c1liplem1  23663  dvgt0lem1  23669  dvne0  23678  lhop1lem  23680  lhop  23683  dvcnvrelem1  23684  dvcvx  23687  ftc2ditglem  23712  pserdv  24087  efcvx  24107  dvlog  24297  dvlog2  24299  dvresntr  39437  dvmptresicc  39440  dvresioo  39442  dvbdfbdioolem1  39449  itgcoscmulx  39492  itgiccshift  39503  itgperiod  39504  dirkercncflem2  39628  fourierdlem57  39687  fourierdlem58  39688  fourierdlem72  39702  fourierdlem73  39703  fourierdlem74  39704  fourierdlem75  39705  fourierdlem80  39710  fourierdlem94  39724  fourierdlem103  39733  fourierdlem104  39734  fourierdlem113  39743
  Copyright terms: Public domain W3C validator