Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumsnf Structured version   Visualization version   GIF version

Theorem esumsnf 29899
Description: The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 2-May-2020.)
Hypotheses
Ref Expression
esumsnf.0 𝑘𝐵
esumsnf.1 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
esumsnf.2 (𝜑𝑀𝑉)
esumsnf.3 (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumsnf (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem esumsnf
Dummy variables 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-esum 29863 . . 3 Σ*𝑘 ∈ {𝑀}𝐴 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴))
21a1i 11 . 2 (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)))
3 eqid 2626 . . . 4 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
4 snfi 7983 . . . . 5 {𝑀} ∈ Fin
54a1i 11 . . . 4 (𝜑 → {𝑀} ∈ Fin)
6 elsni 4170 . . . . . . . . 9 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
7 esumsnf.1 . . . . . . . . 9 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
86, 7sylan2 491 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑀}) → 𝐴 = 𝐵)
98mpteq2dva 4709 . . . . . . 7 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐵))
10 esumsnf.2 . . . . . . . 8 (𝜑𝑀𝑉)
11 esumsnf.3 . . . . . . . 8 (𝜑𝐵 ∈ (0[,]+∞))
12 fmptsn 6388 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → {⟨𝑀, 𝐵⟩} = (𝑙 ∈ {𝑀} ↦ 𝐵))
13 nfcv 2767 . . . . . . . . . 10 𝑙𝐵
14 esumsnf.0 . . . . . . . . . 10 𝑘𝐵
15 eqidd 2627 . . . . . . . . . 10 (𝑘 = 𝑙𝐵 = 𝐵)
1613, 14, 15cbvmpt 4714 . . . . . . . . 9 (𝑘 ∈ {𝑀} ↦ 𝐵) = (𝑙 ∈ {𝑀} ↦ 𝐵)
1712, 16syl6eqr 2678 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → {⟨𝑀, 𝐵⟩} = (𝑘 ∈ {𝑀} ↦ 𝐵))
1810, 11, 17syl2anc 692 . . . . . . 7 (𝜑 → {⟨𝑀, 𝐵⟩} = (𝑘 ∈ {𝑀} ↦ 𝐵))
199, 18eqtr4d 2663 . . . . . 6 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩})
20 fsng 6359 . . . . . . 7 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → ((𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵} ↔ (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩}))
2110, 11, 20syl2anc 692 . . . . . 6 (𝜑 → ((𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵} ↔ (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩}))
2219, 21mpbird 247 . . . . 5 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵})
2311snssd 4314 . . . . 5 (𝜑 → {𝐵} ⊆ (0[,]+∞))
2422, 23fssd 6016 . . . 4 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶(0[,]+∞))
25 xrltso 11918 . . . . . . 7 < Or ℝ*
2625a1i 11 . . . . . 6 (𝜑 → < Or ℝ*)
27 0xr 10031 . . . . . . 7 0 ∈ ℝ*
2827a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
29 elxrge0 12220 . . . . . . . 8 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3011, 29sylib 208 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3130simpld 475 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
32 suppr 8322 . . . . . 6 (( < Or ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → sup({0, 𝐵}, ℝ*, < ) = if(𝐵 < 0, 0, 𝐵))
3326, 28, 31, 32syl3anc 1323 . . . . 5 (𝜑 → sup({0, 𝐵}, ℝ*, < ) = if(𝐵 < 0, 0, 𝐵))
34 0fin 8133 . . . . . . . . . . 11 ∅ ∈ Fin
3534a1i 11 . . . . . . . . . 10 (𝜑 → ∅ ∈ Fin)
36 reseq2 5355 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ ∅))
37 res0 5364 . . . . . . . . . . . . . 14 ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ ∅) = ∅
3836, 37syl6eq 2676 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ∅)
3938oveq2d 6621 . . . . . . . . . . . 12 (𝑥 = ∅ → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg ∅))
40 xrge00 29463 . . . . . . . . . . . . 13 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4140gsum0 17194 . . . . . . . . . . . 12 ((ℝ*𝑠s (0[,]+∞)) Σg ∅) = 0
4239, 41syl6eq 2676 . . . . . . . . . . 11 (𝑥 = ∅ → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 0)
4342adantl 482 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 0)
44 reseq2 5355 . . . . . . . . . . . . 13 (𝑥 = {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}))
45 ssid 3608 . . . . . . . . . . . . . 14 {𝑀} ⊆ {𝑀}
46 resmpt 5412 . . . . . . . . . . . . . 14 ({𝑀} ⊆ {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
4745, 46ax-mp 5 . . . . . . . . . . . . 13 ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴)
4844, 47syl6eq 2676 . . . . . . . . . . . 12 (𝑥 = {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = (𝑘 ∈ {𝑀} ↦ 𝐴))
4948oveq2d 6621 . . . . . . . . . . 11 (𝑥 = {𝑀} → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ {𝑀} ↦ 𝐴)))
50 xrge0base 29462 . . . . . . . . . . . 12 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
51 xrge0cmn 19702 . . . . . . . . . . . . . 14 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
52 cmnmnd 18124 . . . . . . . . . . . . . 14 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
5351, 52ax-mp 5 . . . . . . . . . . . . 13 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
5453a1i 11 . . . . . . . . . . . 12 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
55 nfv 1845 . . . . . . . . . . . 12 𝑘𝜑
5650, 54, 10, 11, 7, 55, 14gsumsnfd 18267 . . . . . . . . . . 11 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐵)
5749, 56sylan9eqr 2682 . . . . . . . . . 10 ((𝜑𝑥 = {𝑀}) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 𝐵)
5835, 5, 28, 11, 43, 57fmptpr 6393 . . . . . . . . 9 (𝜑 → {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = (𝑥 ∈ {∅, {𝑀}} ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
59 pwsn 4401 . . . . . . . . . . . . 13 𝒫 {𝑀} = {∅, {𝑀}}
60 prssi 4326 . . . . . . . . . . . . . 14 ((∅ ∈ Fin ∧ {𝑀} ∈ Fin) → {∅, {𝑀}} ⊆ Fin)
6134, 4, 60mp2an 707 . . . . . . . . . . . . 13 {∅, {𝑀}} ⊆ Fin
6259, 61eqsstri 3619 . . . . . . . . . . . 12 𝒫 {𝑀} ⊆ Fin
63 df-ss 3574 . . . . . . . . . . . 12 (𝒫 {𝑀} ⊆ Fin ↔ (𝒫 {𝑀} ∩ Fin) = 𝒫 {𝑀})
6462, 63mpbi 220 . . . . . . . . . . 11 (𝒫 {𝑀} ∩ Fin) = 𝒫 {𝑀}
6564, 59eqtri 2648 . . . . . . . . . 10 (𝒫 {𝑀} ∩ Fin) = {∅, {𝑀}}
66 eqid 2626 . . . . . . . . . 10 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))
6765, 66mpteq12i 4707 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))) = (𝑥 ∈ {∅, {𝑀}} ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)))
6858, 67syl6eqr 2678 . . . . . . . 8 (𝜑 → {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
6968rneqd 5317 . . . . . . 7 (𝜑 → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
70 rnpropg 5577 . . . . . . . 8 ((∅ ∈ Fin ∧ {𝑀} ∈ Fin) → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = {0, 𝐵})
7135, 5, 70syl2anc 692 . . . . . . 7 (𝜑 → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = {0, 𝐵})
7269, 71eqtr3d 2662 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))) = {0, 𝐵})
7372supeq1d 8297 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))), ℝ*, < ) = sup({0, 𝐵}, ℝ*, < ))
7430simprd 479 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
75 xrlenlt 10048 . . . . . . . . . 10 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
7628, 31, 75syl2anc 692 . . . . . . . . 9 (𝜑 → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
7774, 76mpbid 222 . . . . . . . 8 (𝜑 → ¬ 𝐵 < 0)
78 eqidd 2627 . . . . . . . 8 (𝜑𝐵 = 𝐵)
7977, 78jca 554 . . . . . . 7 (𝜑 → (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵))
8079olcd 408 . . . . . 6 (𝜑 → ((𝐵 < 0 ∧ 𝐵 = 0) ∨ (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵)))
81 eqif 4103 . . . . . 6 (𝐵 = if(𝐵 < 0, 0, 𝐵) ↔ ((𝐵 < 0 ∧ 𝐵 = 0) ∨ (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵)))
8280, 81sylibr 224 . . . . 5 (𝜑𝐵 = if(𝐵 < 0, 0, 𝐵))
8333, 73, 823eqtr4rd 2671 . . . 4 (𝜑𝐵 = sup(ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))), ℝ*, < ))
843, 5, 24, 83xrge0tsmsd 29562 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)) = {𝐵})
8584unieqd 4417 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)) = {𝐵})
86 unisng 4423 . . 3 (𝐵 ∈ (0[,]+∞) → {𝐵} = 𝐵)
8711, 86syl 17 . 2 (𝜑 {𝐵} = 𝐵)
882, 85, 873eqtrd 2664 1 (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1992  wnfc 2754  cin 3559  wss 3560  c0 3896  ifcif 4063  𝒫 cpw 4135  {csn 4153  {cpr 4155  cop 4159   cuni 4407   class class class wbr 4618  cmpt 4678   Or wor 4999  ran crn 5080  cres 5081  wf 5846  (class class class)co 6605  Fincfn 7900  supcsup 8291  0cc0 9881  +∞cpnf 10016  *cxr 10018   < clt 10019  cle 10020  [,]cicc 12117  s cress 15777   Σg cgsu 16017  *𝑠cxrs 16076  Mndcmnd 17210  CMndccmn 18109   tsums ctsu 21834  Σ*cesum 29862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-xadd 11891  df-ioo 12118  df-ioc 12119  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-seq 12739  df-hash 13055  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-tset 15876  df-ple 15877  df-ds 15880  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-ordt 16077  df-xrs 16078  df-mre 16162  df-mrc 16163  df-acs 16165  df-ps 17116  df-tsr 17117  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-fbas 19657  df-fg 19658  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-ntr 20729  df-nei 20807  df-cn 20936  df-haus 21024  df-fil 21555  df-fm 21647  df-flim 21648  df-flf 21649  df-tsms 21835  df-esum 29863
This theorem is referenced by:  esumsn  29900  esum2dlem  29927
  Copyright terms: Public domain W3C validator