MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacfwd Structured version   Visualization version   GIF version

Theorem fallfacfwd 15390
Description: The forward difference of a falling factorial. (Contributed by Scott Fenton, 21-Jan-2018.)
Assertion
Ref Expression
fallfacfwd ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))

Proof of Theorem fallfacfwd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 peano2cn 10812 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
2 nnnn0 11905 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 fallfacval 15363 . . . . 5 (((𝐴 + 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 1) FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘))
41, 2, 3syl2an 597 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘))
5 0p1e1 11760 . . . . . . . . 9 (0 + 1) = 1
65oveq1i 7166 . . . . . . . 8 ((0 + 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
76prodeq1i 15272 . . . . . . 7 𝑘 ∈ ((0 + 1)...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1))
87oveq2i 7167 . . . . . 6 ((𝐴 − -1) · ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(𝐴 − (𝑘 − 1))) = ((𝐴 − -1) · ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1)))
9 nnm1nn0 11939 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
109adantl 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℕ0)
11 nn0uz 12281 . . . . . . . 8 0 = (ℤ‘0)
1210, 11eleqtrdi 2923 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ (ℤ‘0))
13 simpll 765 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
14 elfzelz 12909 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℤ)
1514adantl 484 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℤ)
16 peano2zm 12026 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
1715, 16syl 17 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 − 1) ∈ ℤ)
1817zcnd 12089 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 − 1) ∈ ℂ)
1913, 18subcld 10997 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 − (𝑘 − 1)) ∈ ℂ)
20 oveq1 7163 . . . . . . . . 9 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
21 df-neg 10873 . . . . . . . . 9 -1 = (0 − 1)
2220, 21syl6eqr 2874 . . . . . . . 8 (𝑘 = 0 → (𝑘 − 1) = -1)
2322oveq2d 7172 . . . . . . 7 (𝑘 = 0 → (𝐴 − (𝑘 − 1)) = (𝐴 − -1))
2412, 19, 23fprod1p 15322 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ((𝐴 − -1) · ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(𝐴 − (𝑘 − 1))))
25 fallfacval2 15365 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴 FallFac (𝑁 − 1)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1)))
269, 25sylan2 594 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac (𝑁 − 1)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1)))
2726oveq2d 7172 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 − -1) · (𝐴 FallFac (𝑁 − 1))) = ((𝐴 − -1) · ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1))))
288, 24, 273eqtr4a 2882 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ((𝐴 − -1) · (𝐴 FallFac (𝑁 − 1))))
29 elfznn0 13001 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
3029adantl 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
3130nn0cnd 11958 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℂ)
32 1cnd 10636 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 1 ∈ ℂ)
3313, 31, 32subsub3d 11027 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 − (𝑘 − 1)) = ((𝐴 + 1) − 𝑘))
3433prodeq2dv 15277 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘))
35 simpl 485 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
36 1cnd 10636 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
3735, 36subnegd 11004 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 − -1) = (𝐴 + 1))
3837oveq1d 7171 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 − -1) · (𝐴 FallFac (𝑁 − 1))) = ((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))))
3928, 34, 383eqtr3d 2864 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘) = ((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))))
404, 39eqtrd 2856 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) FallFac 𝑁) = ((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))))
41 simpr 487 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
4241nncnd 11654 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
4342, 36npcand 11001 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
4443oveq2d 7172 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac ((𝑁 − 1) + 1)) = (𝐴 FallFac 𝑁))
45 fallfacp1 15384 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴 FallFac ((𝑁 − 1) + 1)) = ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))))
469, 45sylan2 594 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac ((𝑁 − 1) + 1)) = ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))))
4744, 46eqtr3d 2858 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac 𝑁) = ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))))
4840, 47oveq12d 7174 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1)))))
49 fallfaccl 15370 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴 FallFac (𝑁 − 1)) ∈ ℂ)
509, 49sylan2 594 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac (𝑁 − 1)) ∈ ℂ)
5110nn0cnd 11958 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℂ)
5235, 51subcld 10997 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 − (𝑁 − 1)) ∈ ℂ)
5350, 52mulcomd 10662 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))) = ((𝐴 − (𝑁 − 1)) · (𝐴 FallFac (𝑁 − 1))))
5453oveq2d 7172 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1)))) = (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 − (𝑁 − 1)) · (𝐴 FallFac (𝑁 − 1)))))
551adantr 483 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 + 1) ∈ ℂ)
5655, 52, 50subdird 11097 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) − (𝐴 − (𝑁 − 1))) · (𝐴 FallFac (𝑁 − 1))) = (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 − (𝑁 − 1)) · (𝐴 FallFac (𝑁 − 1)))))
5735, 36, 51pnncand 11036 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) − (𝐴 − (𝑁 − 1))) = (1 + (𝑁 − 1)))
5836, 42pncan3d 11000 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 + (𝑁 − 1)) = 𝑁)
5957, 58eqtrd 2856 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) − (𝐴 − (𝑁 − 1))) = 𝑁)
6059oveq1d 7171 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) − (𝐴 − (𝑁 − 1))) · (𝐴 FallFac (𝑁 − 1))) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))
6154, 56, 603eqtr2d 2862 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1)))) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))
6248, 61eqtrd 2856 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871  cn 11638  0cn0 11898  cz 11982  cuz 12244  ...cfz 12893  cprod 15259   FallFac cfallfac 15358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260  df-fallfac 15361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator