MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivbnd Structured version   Visualization version   GIF version

Theorem logdivbnd 25436
Description: A bound on a sum of logs, used in pntlemk 25486. This is not as precise as logdivsum 25413 in its asymptotic behavior, but it is valid for all 𝑁 and does not require a limit value. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
logdivbnd (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2))
Distinct variable group:   𝑛,𝑁

Proof of Theorem logdivbnd
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 11274 . . . 4 2 ∈ ℝ
2 fzfid 12958 . . . . 5 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
3 elfzuz 12523 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ (ℤ‘1))
43adantl 473 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ (ℤ‘1))
5 nnuz 11908 . . . . . . . . 9 ℕ = (ℤ‘1)
64, 5syl6eleqr 2842 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ)
76nnrpd 12055 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℝ+)
87relogcld 24560 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (log‘𝑛) ∈ ℝ)
98, 6nndivred 11253 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((log‘𝑛) / 𝑛) ∈ ℝ)
102, 9fsumrecl 14656 . . . 4 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ∈ ℝ)
11 remulcl 10205 . . . 4 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ∈ ℝ)
121, 10, 11sylancr 698 . . 3 (𝑁 ∈ ℕ → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ∈ ℝ)
13 elfznn 12555 . . . . . . 7 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
1413adantl 473 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ ℕ)
1514nnrecred 11250 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑖) ∈ ℝ)
162, 15fsumrecl 14656 . . . 4 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) ∈ ℝ)
1716resqcld 13221 . . 3 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) ∈ ℝ)
18 nnrp 12027 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
1918relogcld 24560 . . . . 5 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℝ)
20 peano2re 10393 . . . . 5 ((log‘𝑁) ∈ ℝ → ((log‘𝑁) + 1) ∈ ℝ)
2119, 20syl 17 . . . 4 (𝑁 ∈ ℕ → ((log‘𝑁) + 1) ∈ ℝ)
2221resqcld 13221 . . 3 (𝑁 ∈ ℕ → (((log‘𝑁) + 1)↑2) ∈ ℝ)
2310recnd 10252 . . . . 5 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ∈ ℂ)
24232timesd 11459 . . . 4 (𝑁 ∈ ℕ → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) = (Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) + Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)))
25 fzfid 12958 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1...𝑛) ∈ Fin)
26 elfznn 12555 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑛) → 𝑖 ∈ ℕ)
2726adantl 473 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℕ)
2827nnrecred 11250 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → (1 / 𝑖) ∈ ℝ)
2925, 28fsumrecl 14656 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ∈ ℝ)
3029, 6nndivred 11253 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) ∈ ℝ)
312, 30fsumrecl 14656 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) ∈ ℝ)
32 fzfid 12958 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1...(𝑛 − 1)) ∈ Fin)
33 elfznn 12555 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑛 − 1)) → 𝑖 ∈ ℕ)
3433adantl 473 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...(𝑛 − 1))) → 𝑖 ∈ ℕ)
3534nnrecred 11250 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...(𝑛 − 1))) → (1 / 𝑖) ∈ ℝ)
3632, 35fsumrecl 14656 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ∈ ℝ)
3736, 6nndivred 11253 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ∈ ℝ)
382, 37fsumrecl 14656 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ∈ ℝ)
396nncnd 11220 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℂ)
40 ax-1cn 10178 . . . . . . . . . . . . . . 15 1 ∈ ℂ
41 npcan 10474 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
4239, 40, 41sylancl 697 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((𝑛 − 1) + 1) = 𝑛)
4342fveq2d 6348 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛))
4443oveq2d 6821 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘((𝑛 − 1) + 1))) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)))
45 nnm1nn0 11518 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
46 harmonicbnd3 24925 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ ℕ0 → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘((𝑛 − 1) + 1))) ∈ (0[,]γ))
476, 45, 463syl 18 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘((𝑛 − 1) + 1))) ∈ (0[,]γ))
4844, 47eqeltrrd 2832 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∈ (0[,]γ))
49 0re 10224 . . . . . . . . . . . . 13 0 ∈ ℝ
50 emre 24923 . . . . . . . . . . . . 13 γ ∈ ℝ
5149, 50elicc2i 12424 . . . . . . . . . . . 12 ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∈ (0[,]γ) ↔ ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∈ ℝ ∧ 0 ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∧ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ≤ γ))
5251simp2bi 1140 . . . . . . . . . . 11 ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∈ (0[,]γ) → 0 ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)))
5348, 52syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 0 ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)))
5436, 8subge0d 10801 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (0 ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ↔ (log‘𝑛) ≤ Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)))
5553, 54mpbid 222 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (log‘𝑛) ≤ Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))
568, 36, 7, 55lediv1dd 12115 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((log‘𝑛) / 𝑛) ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
5727nnrpd 12055 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℝ+)
5857rpreccld 12067 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → (1 / 𝑖) ∈ ℝ+)
5958rpge0d 12061 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → 0 ≤ (1 / 𝑖))
60 elfzelz 12527 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℤ)
6160adantl 473 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℤ)
62 peano2zm 11604 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑛 − 1) ∈ ℤ)
6361, 62syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ∈ ℤ)
646nnred 11219 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℝ)
6564lem1d 11141 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ≤ 𝑛)
66 eluz2 11877 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘(𝑛 − 1)) ↔ ((𝑛 − 1) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ (𝑛 − 1) ≤ 𝑛))
6763, 61, 65, 66syl3anbrc 1426 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ (ℤ‘(𝑛 − 1)))
68 fzss2 12566 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘(𝑛 − 1)) → (1...(𝑛 − 1)) ⊆ (1...𝑛))
6967, 68syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1...(𝑛 − 1)) ⊆ (1...𝑛))
7025, 28, 59, 69fsumless 14719 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ≤ Σ𝑖 ∈ (1...𝑛)(1 / 𝑖))
716nngt0d 11248 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 0 < 𝑛)
72 lediv1 11072 . . . . . . . . . 10 ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ∈ ℝ ∧ Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ≤ Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ↔ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)))
7336, 29, 64, 71, 72syl112anc 1477 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ≤ Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ↔ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)))
7470, 73mpbid 222 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
759, 37, 30, 56, 74letrd 10378 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((log‘𝑛) / 𝑛) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
762, 9, 30, 75fsumle 14722 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
772, 9, 37, 56fsumle 14722 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
7810, 10, 31, 38, 76, 77le2addd 10830 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) + Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) + Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛)))
79 oveq1 6812 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
8079oveq2d 6821 . . . . . . . . . 10 (𝑚 = 𝑛 → (1...(𝑚 − 1)) = (1...(𝑛 − 1)))
8180sumeq1d 14622 . . . . . . . . 9 (𝑚 = 𝑛 → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))
8281, 81jca 555 . . . . . . . 8 (𝑚 = 𝑛 → (Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ∧ Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)))
83 oveq1 6812 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑚 − 1) = ((𝑛 + 1) − 1))
8483oveq2d 6821 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (1...(𝑚 − 1)) = (1...((𝑛 + 1) − 1)))
8584sumeq1d 14622 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖))
8685, 85jca 555 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) ∧ Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖)))
87 oveq1 6812 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
88 1m1e0 11273 . . . . . . . . . . . . . 14 (1 − 1) = 0
8987, 88syl6eq 2802 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝑚 − 1) = 0)
9089oveq2d 6821 . . . . . . . . . . . 12 (𝑚 = 1 → (1...(𝑚 − 1)) = (1...0))
91 fz10 12547 . . . . . . . . . . . 12 (1...0) = ∅
9290, 91syl6eq 2802 . . . . . . . . . . 11 (𝑚 = 1 → (1...(𝑚 − 1)) = ∅)
9392sumeq1d 14622 . . . . . . . . . 10 (𝑚 = 1 → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ ∅ (1 / 𝑖))
94 sum0 14643 . . . . . . . . . 10 Σ𝑖 ∈ ∅ (1 / 𝑖) = 0
9593, 94syl6eq 2802 . . . . . . . . 9 (𝑚 = 1 → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = 0)
9695, 95jca 555 . . . . . . . 8 (𝑚 = 1 → (Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = 0 ∧ Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = 0))
97 oveq1 6812 . . . . . . . . . . 11 (𝑚 = (𝑁 + 1) → (𝑚 − 1) = ((𝑁 + 1) − 1))
9897oveq2d 6821 . . . . . . . . . 10 (𝑚 = (𝑁 + 1) → (1...(𝑚 − 1)) = (1...((𝑁 + 1) − 1)))
9998sumeq1d 14622 . . . . . . . . 9 (𝑚 = (𝑁 + 1) → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖))
10099, 99jca 555 . . . . . . . 8 (𝑚 = (𝑁 + 1) → (Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) ∧ Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)))
101 peano2nn 11216 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
102101, 5syl6eleq 2841 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘1))
103 fzfid 12958 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1...(𝑚 − 1)) ∈ Fin)
104 elfznn 12555 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑚 − 1)) → 𝑖 ∈ ℕ)
105104adantl 473 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) ∧ 𝑖 ∈ (1...(𝑚 − 1))) → 𝑖 ∈ ℕ)
106105nnrecred 11250 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) ∧ 𝑖 ∈ (1...(𝑚 − 1))) → (1 / 𝑖) ∈ ℝ)
107103, 106fsumrecl 14656 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) ∈ ℝ)
108107recnd 10252 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) ∈ ℂ)
10982, 86, 96, 100, 102, 108, 108fsumparts 14729 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1..^(𝑁 + 1))(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))) = (((Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) − (0 · 0)) − Σ𝑛 ∈ (1..^(𝑁 + 1))((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖))))
110 nnz 11583 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
111 fzval3 12723 . . . . . . . . . 10 (𝑁 ∈ ℤ → (1...𝑁) = (1..^(𝑁 + 1)))
112110, 111syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (1...𝑁) = (1..^(𝑁 + 1)))
113112eqcomd 2758 . . . . . . . 8 (𝑁 ∈ ℕ → (1..^(𝑁 + 1)) = (1...𝑁))
114 pncan 10471 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
11539, 40, 114sylancl 697 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((𝑛 + 1) − 1) = 𝑛)
116115oveq2d 6821 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1...((𝑛 + 1) − 1)) = (1...𝑛))
117116sumeq1d 14622 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...𝑛)(1 / 𝑖))
11828recnd 10252 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → (1 / 𝑖) ∈ ℂ)
119 oveq2 6813 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (1 / 𝑖) = (1 / 𝑛))
1204, 118, 119fsumm1 14671 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) + (1 / 𝑛)))
121117, 120eqtrd 2786 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) + (1 / 𝑛)))
122121oveq1d 6820 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) = ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) + (1 / 𝑛)) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)))
12336recnd 10252 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ∈ ℂ)
1246nnrecred 11250 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1 / 𝑛) ∈ ℝ)
125124recnd 10252 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1 / 𝑛) ∈ ℂ)
126123, 125pncan2d 10578 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) + (1 / 𝑛)) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) = (1 / 𝑛))
127122, 126eqtrd 2786 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) = (1 / 𝑛))
128127oveq2d 6821 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (1 / 𝑛)))
1296nnne0d 11249 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ≠ 0)
130123, 39, 129divrecd 10988 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (1 / 𝑛)))
131128, 130eqtr4d 2789 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
132113, 131sumeq12rdv 14629 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1..^(𝑁 + 1))(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))) = Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
133 nncn 11212 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
134 pncan 10471 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
135133, 40, 134sylancl 697 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
136135oveq2d 6821 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (1...((𝑁 + 1) − 1)) = (1...𝑁))
137136sumeq1d 14622 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...𝑁)(1 / 𝑖))
138137, 137oveq12d 6823 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) · Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)))
13916recnd 10252 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) ∈ ℂ)
140139sqvald 13191 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) · Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)))
141138, 140eqtr4d 2789 . . . . . . . . . 10 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
142 0cn 10216 . . . . . . . . . . . 12 0 ∈ ℂ
143142mul01i 10410 . . . . . . . . . . 11 (0 · 0) = 0
144143a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0 · 0) = 0)
145141, 144oveq12d 6823 . . . . . . . . 9 (𝑁 ∈ ℕ → ((Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) − (0 · 0)) = ((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − 0))
146139sqcld 13192 . . . . . . . . . 10 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) ∈ ℂ)
147146subid1d 10565 . . . . . . . . 9 (𝑁 ∈ ℕ → ((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − 0) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
148145, 147eqtrd 2786 . . . . . . . 8 (𝑁 ∈ ℕ → ((Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) − (0 · 0)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
149127, 117oveq12d 6823 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖)) = ((1 / 𝑛) · Σ𝑖 ∈ (1...𝑛)(1 / 𝑖)))
15029recnd 10252 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ∈ ℂ)
151150, 39, 129divrec2d 10989 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) = ((1 / 𝑛) · Σ𝑖 ∈ (1...𝑛)(1 / 𝑖)))
152149, 151eqtr4d 2789 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖)) = (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
153113, 152sumeq12rdv 14629 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1..^(𝑁 + 1))((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖)) = Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
154148, 153oveq12d 6823 . . . . . . 7 (𝑁 ∈ ℕ → (((Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) − (0 · 0)) − Σ𝑛 ∈ (1..^(𝑁 + 1))((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖))) = ((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)))
155109, 132, 1543eqtr3rd 2795 . . . . . 6 (𝑁 ∈ ℕ → ((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)) = Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
15631recnd 10252 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) ∈ ℂ)
15738recnd 10252 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ∈ ℂ)
158146, 156, 157subaddd 10594 . . . . . 6 (𝑁 ∈ ℕ → (((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)) = Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ↔ (Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) + Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2)))
159155, 158mpbid 222 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) + Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
16078, 159breqtrd 4822 . . . 4 (𝑁 ∈ ℕ → (Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) + Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
16124, 160eqbrtrd 4818 . . 3 (𝑁 ∈ ℕ → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
162 flid 12795 . . . . . . . 8 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
163110, 162syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (⌊‘𝑁) = 𝑁)
164163oveq2d 6821 . . . . . 6 (𝑁 ∈ ℕ → (1...(⌊‘𝑁)) = (1...𝑁))
165164sumeq1d 14622 . . . . 5 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...(⌊‘𝑁))(1 / 𝑖) = Σ𝑖 ∈ (1...𝑁)(1 / 𝑖))
166 nnre 11211 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
167 nnge1 11230 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
168 harmonicubnd 24927 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 ≤ 𝑁) → Σ𝑖 ∈ (1...(⌊‘𝑁))(1 / 𝑖) ≤ ((log‘𝑁) + 1))
169166, 167, 168syl2anc 696 . . . . 5 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...(⌊‘𝑁))(1 / 𝑖) ≤ ((log‘𝑁) + 1))
170165, 169eqbrtrrd 4820 . . . 4 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) ≤ ((log‘𝑁) + 1))
17114nnrpd 12055 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ ℝ+)
172171rpreccld 12067 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑖) ∈ ℝ+)
173172rpge0d 12061 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ (1 / 𝑖))
1742, 15, 173fsumge0 14718 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ Σ𝑖 ∈ (1...𝑁)(1 / 𝑖))
17549a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 0 ∈ ℝ)
176 log1 24523 . . . . . . 7 (log‘1) = 0
177 1rp 12021 . . . . . . . . 9 1 ∈ ℝ+
178 logleb 24540 . . . . . . . . 9 ((1 ∈ ℝ+𝑁 ∈ ℝ+) → (1 ≤ 𝑁 ↔ (log‘1) ≤ (log‘𝑁)))
179177, 18, 178sylancr 698 . . . . . . . 8 (𝑁 ∈ ℕ → (1 ≤ 𝑁 ↔ (log‘1) ≤ (log‘𝑁)))
180167, 179mpbid 222 . . . . . . 7 (𝑁 ∈ ℕ → (log‘1) ≤ (log‘𝑁))
181176, 180syl5eqbrr 4832 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (log‘𝑁))
18219lep1d 11139 . . . . . 6 (𝑁 ∈ ℕ → (log‘𝑁) ≤ ((log‘𝑁) + 1))
183175, 19, 21, 181, 182letrd 10378 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ ((log‘𝑁) + 1))
18416, 21, 174, 183le2sqd 13230 . . . 4 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) ≤ ((log‘𝑁) + 1) ↔ (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) ≤ (((log‘𝑁) + 1)↑2)))
185170, 184mpbid 222 . . 3 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) ≤ (((log‘𝑁) + 1)↑2))
18612, 17, 22, 161, 185letrd 10378 . 2 (𝑁 ∈ ℕ → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (((log‘𝑁) + 1)↑2))
1871a1i 11 . . 3 (𝑁 ∈ ℕ → 2 ∈ ℝ)
188 2pos 11296 . . . 4 0 < 2
189188a1i 11 . . 3 (𝑁 ∈ ℕ → 0 < 2)
190 lemuldiv2 11088 . . 3 ((Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ∈ ℝ ∧ (((log‘𝑁) + 1)↑2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (((log‘𝑁) + 1)↑2) ↔ Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2)))
19110, 22, 187, 189, 190syl112anc 1477 . 2 (𝑁 ∈ ℕ → ((2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (((log‘𝑁) + 1)↑2) ↔ Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2)))
192186, 191mpbid 222 1 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wss 3707  c0 4050   class class class wbr 4796  cfv 6041  (class class class)co 6805  cc 10118  cr 10119  0cc0 10120  1c1 10121   + caddc 10123   · cmul 10125   < clt 10258  cle 10259  cmin 10450   / cdiv 10868  cn 11204  2c2 11254  0cn0 11476  cz 11561  cuz 11871  +crp 12017  [,]cicc 12363  ...cfz 12511  ..^cfzo 12651  cfl 12777  cexp 13046  Σcsu 14607  logclog 24492  γcem 24909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ioo 12364  df-ioc 12365  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-fac 13247  df-bc 13276  df-hash 13304  df-shft 13998  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-limsup 14393  df-clim 14410  df-rlim 14411  df-sum 14608  df-ef 14989  df-e 14990  df-sin 14991  df-cos 14992  df-pi 14994  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-hom 16160  df-cco 16161  df-rest 16277  df-topn 16278  df-0g 16296  df-gsum 16297  df-topgen 16298  df-pt 16299  df-prds 16302  df-xrs 16356  df-qtop 16361  df-imas 16362  df-xps 16364  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-mulg 17734  df-cntz 17942  df-cmn 18387  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-fbas 19937  df-fg 19938  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-ntr 21018  df-cls 21019  df-nei 21096  df-lp 21134  df-perf 21135  df-cn 21225  df-cnp 21226  df-haus 21313  df-tx 21559  df-hmeo 21752  df-fil 21843  df-fm 21935  df-flim 21936  df-flf 21937  df-xms 22318  df-ms 22319  df-tms 22320  df-cncf 22874  df-limc 23821  df-dv 23822  df-log 24494  df-em 24910
This theorem is referenced by:  pntlemk  25486
  Copyright terms: Public domain W3C validator