MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivbnd Structured version   Visualization version   GIF version

Theorem logdivbnd 25145
Description: A bound on a sum of logs, used in pntlemk 25195. This is not as precise as logdivsum 25122 in its asymptotic behavior, but it is valid for all 𝑁 and does not require a limit value. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
logdivbnd (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2))
Distinct variable group:   𝑛,𝑁

Proof of Theorem logdivbnd
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 11034 . . . 4 2 ∈ ℝ
2 fzfid 12712 . . . . 5 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
3 elfzuz 12280 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ (ℤ‘1))
43adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ (ℤ‘1))
5 nnuz 11667 . . . . . . . . 9 ℕ = (ℤ‘1)
64, 5syl6eleqr 2709 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ)
76nnrpd 11814 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℝ+)
87relogcld 24273 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (log‘𝑛) ∈ ℝ)
98, 6nndivred 11013 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((log‘𝑛) / 𝑛) ∈ ℝ)
102, 9fsumrecl 14398 . . . 4 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ∈ ℝ)
11 remulcl 9965 . . . 4 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ∈ ℝ)
121, 10, 11sylancr 694 . . 3 (𝑁 ∈ ℕ → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ∈ ℝ)
13 elfznn 12312 . . . . . . 7 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
1413adantl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ ℕ)
1514nnrecred 11010 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑖) ∈ ℝ)
162, 15fsumrecl 14398 . . . 4 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) ∈ ℝ)
1716resqcld 12975 . . 3 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) ∈ ℝ)
18 nnrp 11786 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
1918relogcld 24273 . . . . 5 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℝ)
20 peano2re 10153 . . . . 5 ((log‘𝑁) ∈ ℝ → ((log‘𝑁) + 1) ∈ ℝ)
2119, 20syl 17 . . . 4 (𝑁 ∈ ℕ → ((log‘𝑁) + 1) ∈ ℝ)
2221resqcld 12975 . . 3 (𝑁 ∈ ℕ → (((log‘𝑁) + 1)↑2) ∈ ℝ)
2310recnd 10012 . . . . 5 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ∈ ℂ)
24232timesd 11219 . . . 4 (𝑁 ∈ ℕ → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) = (Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) + Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)))
25 fzfid 12712 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1...𝑛) ∈ Fin)
26 elfznn 12312 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑛) → 𝑖 ∈ ℕ)
2726adantl 482 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℕ)
2827nnrecred 11010 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → (1 / 𝑖) ∈ ℝ)
2925, 28fsumrecl 14398 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ∈ ℝ)
3029, 6nndivred 11013 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) ∈ ℝ)
312, 30fsumrecl 14398 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) ∈ ℝ)
32 fzfid 12712 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1...(𝑛 − 1)) ∈ Fin)
33 elfznn 12312 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑛 − 1)) → 𝑖 ∈ ℕ)
3433adantl 482 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...(𝑛 − 1))) → 𝑖 ∈ ℕ)
3534nnrecred 11010 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...(𝑛 − 1))) → (1 / 𝑖) ∈ ℝ)
3632, 35fsumrecl 14398 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ∈ ℝ)
3736, 6nndivred 11013 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ∈ ℝ)
382, 37fsumrecl 14398 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ∈ ℝ)
396nncnd 10980 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℂ)
40 ax-1cn 9938 . . . . . . . . . . . . . . 15 1 ∈ ℂ
41 npcan 10234 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
4239, 40, 41sylancl 693 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((𝑛 − 1) + 1) = 𝑛)
4342fveq2d 6152 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛))
4443oveq2d 6620 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘((𝑛 − 1) + 1))) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)))
45 nnm1nn0 11278 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
46 harmonicbnd3 24634 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ ℕ0 → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘((𝑛 − 1) + 1))) ∈ (0[,]γ))
476, 45, 463syl 18 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘((𝑛 − 1) + 1))) ∈ (0[,]γ))
4844, 47eqeltrrd 2699 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∈ (0[,]γ))
49 0re 9984 . . . . . . . . . . . . 13 0 ∈ ℝ
50 emre 24632 . . . . . . . . . . . . 13 γ ∈ ℝ
5149, 50elicc2i 12181 . . . . . . . . . . . 12 ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∈ (0[,]γ) ↔ ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∈ ℝ ∧ 0 ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∧ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ≤ γ))
5251simp2bi 1075 . . . . . . . . . . 11 ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ∈ (0[,]γ) → 0 ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)))
5348, 52syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 0 ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)))
5436, 8subge0d 10561 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (0 ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) − (log‘𝑛)) ↔ (log‘𝑛) ≤ Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)))
5553, 54mpbid 222 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (log‘𝑛) ≤ Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))
568, 36, 7, 55lediv1dd 11874 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((log‘𝑛) / 𝑛) ≤ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
5727nnrpd 11814 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → 𝑖 ∈ ℝ+)
5857rpreccld 11826 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → (1 / 𝑖) ∈ ℝ+)
5958rpge0d 11820 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → 0 ≤ (1 / 𝑖))
60 elfzelz 12284 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℤ)
6160adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℤ)
62 peano2zm 11364 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑛 − 1) ∈ ℤ)
6361, 62syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ∈ ℤ)
646nnred 10979 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℝ)
6564lem1d 10901 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (𝑛 − 1) ≤ 𝑛)
66 eluz2 11637 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘(𝑛 − 1)) ↔ ((𝑛 − 1) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ (𝑛 − 1) ≤ 𝑛))
6763, 61, 65, 66syl3anbrc 1244 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ (ℤ‘(𝑛 − 1)))
68 fzss2 12323 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘(𝑛 − 1)) → (1...(𝑛 − 1)) ⊆ (1...𝑛))
6967, 68syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1...(𝑛 − 1)) ⊆ (1...𝑛))
7025, 28, 59, 69fsumless 14455 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ≤ Σ𝑖 ∈ (1...𝑛)(1 / 𝑖))
716nngt0d 11008 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 0 < 𝑛)
72 lediv1 10832 . . . . . . . . . 10 ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ∈ ℝ ∧ Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ≤ Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ↔ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)))
7336, 29, 64, 71, 72syl112anc 1327 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ≤ Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ↔ (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)))
7470, 73mpbid 222 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
759, 37, 30, 56, 74letrd 10138 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((log‘𝑛) / 𝑛) ≤ (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
762, 9, 30, 75fsumle 14458 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
772, 9, 37, 56fsumle 14458 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
7810, 10, 31, 38, 76, 77le2addd 10590 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) + Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) + Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛)))
79 oveq1 6611 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
8079oveq2d 6620 . . . . . . . . . 10 (𝑚 = 𝑛 → (1...(𝑚 − 1)) = (1...(𝑛 − 1)))
8180sumeq1d 14365 . . . . . . . . 9 (𝑚 = 𝑛 → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))
8281, 81jca 554 . . . . . . . 8 (𝑚 = 𝑛 → (Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ∧ Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)))
83 oveq1 6611 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑚 − 1) = ((𝑛 + 1) − 1))
8483oveq2d 6620 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (1...(𝑚 − 1)) = (1...((𝑛 + 1) − 1)))
8584sumeq1d 14365 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖))
8685, 85jca 554 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) ∧ Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖)))
87 oveq1 6611 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
88 1m1e0 11033 . . . . . . . . . . . . . 14 (1 − 1) = 0
8987, 88syl6eq 2671 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝑚 − 1) = 0)
9089oveq2d 6620 . . . . . . . . . . . 12 (𝑚 = 1 → (1...(𝑚 − 1)) = (1...0))
91 fz10 12304 . . . . . . . . . . . 12 (1...0) = ∅
9290, 91syl6eq 2671 . . . . . . . . . . 11 (𝑚 = 1 → (1...(𝑚 − 1)) = ∅)
9392sumeq1d 14365 . . . . . . . . . 10 (𝑚 = 1 → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ ∅ (1 / 𝑖))
94 sum0 14385 . . . . . . . . . 10 Σ𝑖 ∈ ∅ (1 / 𝑖) = 0
9593, 94syl6eq 2671 . . . . . . . . 9 (𝑚 = 1 → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = 0)
9695, 95jca 554 . . . . . . . 8 (𝑚 = 1 → (Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = 0 ∧ Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = 0))
97 oveq1 6611 . . . . . . . . . . 11 (𝑚 = (𝑁 + 1) → (𝑚 − 1) = ((𝑁 + 1) − 1))
9897oveq2d 6620 . . . . . . . . . 10 (𝑚 = (𝑁 + 1) → (1...(𝑚 − 1)) = (1...((𝑁 + 1) − 1)))
9998sumeq1d 14365 . . . . . . . . 9 (𝑚 = (𝑁 + 1) → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖))
10099, 99jca 554 . . . . . . . 8 (𝑚 = (𝑁 + 1) → (Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) ∧ Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)))
101 peano2nn 10976 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
102101, 5syl6eleq 2708 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘1))
103 fzfid 12712 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1...(𝑚 − 1)) ∈ Fin)
104 elfznn 12312 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑚 − 1)) → 𝑖 ∈ ℕ)
105104adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) ∧ 𝑖 ∈ (1...(𝑚 − 1))) → 𝑖 ∈ ℕ)
106105nnrecred 11010 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) ∧ 𝑖 ∈ (1...(𝑚 − 1))) → (1 / 𝑖) ∈ ℝ)
107103, 106fsumrecl 14398 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) ∈ ℝ)
108107recnd 10012 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → Σ𝑖 ∈ (1...(𝑚 − 1))(1 / 𝑖) ∈ ℂ)
10982, 86, 96, 100, 102, 108, 108fsumparts 14465 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1..^(𝑁 + 1))(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))) = (((Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) − (0 · 0)) − Σ𝑛 ∈ (1..^(𝑁 + 1))((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖))))
110 nnz 11343 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
111 fzval3 12477 . . . . . . . . . 10 (𝑁 ∈ ℤ → (1...𝑁) = (1..^(𝑁 + 1)))
112110, 111syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (1...𝑁) = (1..^(𝑁 + 1)))
113112eqcomd 2627 . . . . . . . 8 (𝑁 ∈ ℕ → (1..^(𝑁 + 1)) = (1...𝑁))
114 pncan 10231 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
11539, 40, 114sylancl 693 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((𝑛 + 1) − 1) = 𝑛)
116115oveq2d 6620 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1...((𝑛 + 1) − 1)) = (1...𝑛))
117116sumeq1d 14365 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...𝑛)(1 / 𝑖))
11828recnd 10012 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑖 ∈ (1...𝑛)) → (1 / 𝑖) ∈ ℂ)
119 oveq2 6612 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (1 / 𝑖) = (1 / 𝑛))
1204, 118, 119fsumm1 14410 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) + (1 / 𝑛)))
121117, 120eqtrd 2655 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) + (1 / 𝑛)))
122121oveq1d 6619 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) = ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) + (1 / 𝑛)) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)))
12336recnd 10012 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) ∈ ℂ)
1246nnrecred 11010 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1 / 𝑛) ∈ ℝ)
125124recnd 10012 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (1 / 𝑛) ∈ ℂ)
126123, 125pncan2d 10338 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) + (1 / 𝑛)) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) = (1 / 𝑛))
127122, 126eqtrd 2655 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) = (1 / 𝑛))
128127oveq2d 6620 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (1 / 𝑛)))
1296nnne0d 11009 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ≠ 0)
130123, 39, 129divrecd 10748 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (1 / 𝑛)))
131128, 130eqtr4d 2658 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))) = (Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
132113, 131sumeq12rdv 14371 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1..^(𝑁 + 1))(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) · (Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖))) = Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
133 nncn 10972 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
134 pncan 10231 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
135133, 40, 134sylancl 693 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
136135oveq2d 6620 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (1...((𝑁 + 1) − 1)) = (1...𝑁))
137136sumeq1d 14365 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) = Σ𝑖 ∈ (1...𝑁)(1 / 𝑖))
138137, 137oveq12d 6622 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) · Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)))
13916recnd 10012 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) ∈ ℂ)
140139sqvald 12945 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) · Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)))
141138, 140eqtr4d 2658 . . . . . . . . . 10 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
142 0cn 9976 . . . . . . . . . . . 12 0 ∈ ℂ
143142mul01i 10170 . . . . . . . . . . 11 (0 · 0) = 0
144143a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0 · 0) = 0)
145141, 144oveq12d 6622 . . . . . . . . 9 (𝑁 ∈ ℕ → ((Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) − (0 · 0)) = ((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − 0))
146139sqcld 12946 . . . . . . . . . 10 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) ∈ ℂ)
147146subid1d 10325 . . . . . . . . 9 (𝑁 ∈ ℕ → ((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − 0) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
148145, 147eqtrd 2655 . . . . . . . 8 (𝑁 ∈ ℕ → ((Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) − (0 · 0)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
149127, 117oveq12d 6622 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖)) = ((1 / 𝑛) · Σ𝑖 ∈ (1...𝑛)(1 / 𝑖)))
15029recnd 10012 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) ∈ ℂ)
151150, 39, 129divrec2d 10749 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) = ((1 / 𝑛) · Σ𝑖 ∈ (1...𝑛)(1 / 𝑖)))
152149, 151eqtr4d 2658 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → ((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖)) = (Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
153113, 152sumeq12rdv 14371 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1..^(𝑁 + 1))((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖)) = Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛))
154148, 153oveq12d 6622 . . . . . . 7 (𝑁 ∈ ℕ → (((Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖) · Σ𝑖 ∈ (1...((𝑁 + 1) − 1))(1 / 𝑖)) − (0 · 0)) − Σ𝑛 ∈ (1..^(𝑁 + 1))((Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖) − Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖)) · Σ𝑖 ∈ (1...((𝑛 + 1) − 1))(1 / 𝑖))) = ((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)))
155109, 132, 1543eqtr3rd 2664 . . . . . 6 (𝑁 ∈ ℕ → ((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)) = Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛))
15631recnd 10012 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) ∈ ℂ)
15738recnd 10012 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ∈ ℂ)
158146, 156, 157subaddd 10354 . . . . . 6 (𝑁 ∈ ℕ → (((Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) − Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛)) = Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛) ↔ (Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) + Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2)))
159155, 158mpbid 222 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...𝑛)(1 / 𝑖) / 𝑛) + Σ𝑛 ∈ (1...𝑁)(Σ𝑖 ∈ (1...(𝑛 − 1))(1 / 𝑖) / 𝑛)) = (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
16078, 159breqtrd 4639 . . . 4 (𝑁 ∈ ℕ → (Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) + Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
16124, 160eqbrtrd 4635 . . 3 (𝑁 ∈ ℕ → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2))
162 flid 12549 . . . . . . . 8 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
163110, 162syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (⌊‘𝑁) = 𝑁)
164163oveq2d 6620 . . . . . 6 (𝑁 ∈ ℕ → (1...(⌊‘𝑁)) = (1...𝑁))
165164sumeq1d 14365 . . . . 5 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...(⌊‘𝑁))(1 / 𝑖) = Σ𝑖 ∈ (1...𝑁)(1 / 𝑖))
166 nnre 10971 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
167 nnge1 10990 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
168 harmonicubnd 24636 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 ≤ 𝑁) → Σ𝑖 ∈ (1...(⌊‘𝑁))(1 / 𝑖) ≤ ((log‘𝑁) + 1))
169166, 167, 168syl2anc 692 . . . . 5 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...(⌊‘𝑁))(1 / 𝑖) ≤ ((log‘𝑁) + 1))
170165, 169eqbrtrrd 4637 . . . 4 (𝑁 ∈ ℕ → Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) ≤ ((log‘𝑁) + 1))
17114nnrpd 11814 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ ℝ+)
172171rpreccld 11826 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑖) ∈ ℝ+)
173172rpge0d 11820 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ (1 / 𝑖))
1742, 15, 173fsumge0 14454 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ Σ𝑖 ∈ (1...𝑁)(1 / 𝑖))
17549a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 0 ∈ ℝ)
176 log1 24236 . . . . . . 7 (log‘1) = 0
177 1rp 11780 . . . . . . . . 9 1 ∈ ℝ+
178 logleb 24253 . . . . . . . . 9 ((1 ∈ ℝ+𝑁 ∈ ℝ+) → (1 ≤ 𝑁 ↔ (log‘1) ≤ (log‘𝑁)))
179177, 18, 178sylancr 694 . . . . . . . 8 (𝑁 ∈ ℕ → (1 ≤ 𝑁 ↔ (log‘1) ≤ (log‘𝑁)))
180167, 179mpbid 222 . . . . . . 7 (𝑁 ∈ ℕ → (log‘1) ≤ (log‘𝑁))
181176, 180syl5eqbrr 4649 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (log‘𝑁))
18219lep1d 10899 . . . . . 6 (𝑁 ∈ ℕ → (log‘𝑁) ≤ ((log‘𝑁) + 1))
183175, 19, 21, 181, 182letrd 10138 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ ((log‘𝑁) + 1))
18416, 21, 174, 183le2sqd 12984 . . . 4 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖) ≤ ((log‘𝑁) + 1) ↔ (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) ≤ (((log‘𝑁) + 1)↑2)))
185170, 184mpbid 222 . . 3 (𝑁 ∈ ℕ → (Σ𝑖 ∈ (1...𝑁)(1 / 𝑖)↑2) ≤ (((log‘𝑁) + 1)↑2))
18612, 17, 22, 161, 185letrd 10138 . 2 (𝑁 ∈ ℕ → (2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (((log‘𝑁) + 1)↑2))
1871a1i 11 . . 3 (𝑁 ∈ ℕ → 2 ∈ ℝ)
188 2pos 11056 . . . 4 0 < 2
189188a1i 11 . . 3 (𝑁 ∈ ℕ → 0 < 2)
190 lemuldiv2 10848 . . 3 ((Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ∈ ℝ ∧ (((log‘𝑁) + 1)↑2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (((log‘𝑁) + 1)↑2) ↔ Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2)))
19110, 22, 187, 189, 190syl112anc 1327 . 2 (𝑁 ∈ ℕ → ((2 · Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛)) ≤ (((log‘𝑁) + 1)↑2) ↔ Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2)))
192186, 191mpbid 222 1 (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wss 3555  c0 3891   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  cuz 11631  +crp 11776  [,]cicc 12120  ...cfz 12268  ..^cfzo 12406  cfl 12531  cexp 12800  Σcsu 14350  logclog 24205  γcem 24618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-e 14724  df-sin 14725  df-cos 14726  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-log 24207  df-em 24619
This theorem is referenced by:  pntlemk  25195
  Copyright terms: Public domain W3C validator