Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccssred Structured version   Visualization version   GIF version

Theorem iccssred 39173
Description: A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iccssred.1 (𝜑𝐴 ∈ ℝ)
iccssred.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iccssred (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)

Proof of Theorem iccssred
StepHypRef Expression
1 iccssred.1 . 2 (𝜑𝐴 ∈ ℝ)
2 iccssred.2 . 2 (𝜑𝐵 ∈ ℝ)
3 iccssre 12213 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 692 1 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987  wss 3560  (class class class)co 6615  cr 9895  [,]cicc 12136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-pre-lttri 9970  ax-pre-lttrn 9971
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-icc 12140
This theorem is referenced by:  iccshift  39190  eliccelioc  39193  limciccioolb  39289  limcicciooub  39305  icccncfext  39435  cncfiooicclem1  39441  dvmptresicc  39471  itgcoscmulx  39522  ibliooicc  39524  itgsincmulx  39527  itgsubsticclem  39528  itgiccshift  39533  itgperiod  39534  itgsbtaddcnst  39535  dirkeritg  39656  fourierdlem20  39681  fourierdlem25  39686  fourierdlem39  39700  fourierdlem40  39701  fourierdlem42  39703  fourierdlem46  39706  fourierdlem50  39710  fourierdlem51  39711  fourierdlem52  39712  fourierdlem54  39714  fourierdlem58  39718  fourierdlem64  39724  fourierdlem68  39728  fourierdlem73  39733  fourierdlem74  39734  fourierdlem75  39735  fourierdlem76  39736  fourierdlem78  39738  fourierdlem79  39739  fourierdlem80  39740  fourierdlem81  39741  fourierdlem84  39744  fourierdlem88  39748  fourierdlem89  39749  fourierdlem90  39750  fourierdlem91  39751  fourierdlem100  39760  fourierdlem103  39763  fourierdlem104  39764  fourierdlem107  39767  fourierdlem111  39771  fourierdlem112  39772  etransclem18  39806  etransclem46  39834  rrxsnicc  39857  hoidmv1lelem1  40142  hoidmv1lelem3  40144  hoidmvlelem1  40146  hoidmvlelem2  40147  hoidmvlelem4  40149
  Copyright terms: Public domain W3C validator