Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem4 Structured version   Visualization version   GIF version

Theorem knoppcnlem4 33837
Description: Lemma for knoppcn 33845. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem4.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem4.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem4.n (𝜑𝑁 ∈ ℕ)
knoppcnlem4.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem4.2 (𝜑𝐴 ∈ ℝ)
knoppcnlem4.3 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem4 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑥,𝐴   𝐶,𝑚   𝐶,𝑛,𝑦   𝑚,𝑀   𝑛,𝑀   𝑥,𝑀   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑚   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑚)   𝐶(𝑥)   𝑇(𝑥,𝑚)   𝐹(𝑥,𝑦,𝑚,𝑛)   𝑀(𝑦)   𝑁(𝑚)

Proof of Theorem knoppcnlem4
StepHypRef Expression
1 knoppcnlem4.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 knoppcnlem4.2 . . . 4 (𝜑𝐴 ∈ ℝ)
3 knoppcnlem4.3 . . . 4 (𝜑𝑀 ∈ ℕ0)
41, 2, 3knoppcnlem1 33834 . . 3 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
54fveq2d 6676 . 2 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) = (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
6 knoppcnlem4.1 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
76recnd 10671 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
87, 3expcld 13513 . . . . . 6 (𝜑 → (𝐶𝑀) ∈ ℂ)
9 knoppcnlem4.t . . . . . . . 8 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
10 2re 11714 . . . . . . . . . . . 12 2 ∈ ℝ
1110a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
12 knoppcnlem4.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
13 nnre 11647 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1412, 13syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
1511, 14remulcld 10673 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
1615, 3reexpcld 13530 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℝ)
1716, 2remulcld 10673 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ)
189, 17dnicld2 33814 . . . . . . 7 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℝ)
1918recnd 10671 . . . . . 6 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ)
208, 19absmuld 14816 . . . . 5 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = ((abs‘(𝐶𝑀)) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
217, 3absexpd 14814 . . . . . 6 (𝜑 → (abs‘(𝐶𝑀)) = ((abs‘𝐶)↑𝑀))
2221oveq1d 7173 . . . . 5 (𝜑 → ((abs‘(𝐶𝑀)) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
2320, 22eqtrd 2858 . . . 4 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) = (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))))
2419abscld 14798 . . . . . 6 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
25 1red 10644 . . . . . 6 (𝜑 → 1 ∈ ℝ)
267abscld 14798 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
2726, 3reexpcld 13530 . . . . . 6 (𝜑 → ((abs‘𝐶)↑𝑀) ∈ ℝ)
287absge0d 14806 . . . . . . 7 (𝜑 → 0 ≤ (abs‘𝐶))
2926, 3, 28expge0d 13531 . . . . . 6 (𝜑 → 0 ≤ ((abs‘𝐶)↑𝑀))
309dnival 33812 . . . . . . . . . 10 ((((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
3117, 30syl 17 . . . . . . . . 9 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
3231fveq2d 6676 . . . . . . . 8 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) = (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))))
33 halfre 11854 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
3433a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℝ)
3517, 34readdcld 10672 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2)) ∈ ℝ)
36 reflcl 13169 . . . . . . . . . . . 12 (((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2)) ∈ ℝ → (⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) ∈ ℝ)
3735, 36syl 17 . . . . . . . . . . 11 (𝜑 → (⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) ∈ ℝ)
3837, 17resubcld 11070 . . . . . . . . . 10 (𝜑 → ((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℝ)
3938recnd 10671 . . . . . . . . 9 (𝜑 → ((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ)
40 absidm 14685 . . . . . . . . 9 (((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)) ∈ ℂ → (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4139, 40syl 17 . . . . . . . 8 (𝜑 → (abs‘(abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴)))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4232, 41eqtrd 2858 . . . . . . 7 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) = (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))))
4331, 18eqeltrrd 2916 . . . . . . . 8 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
44 rddif 14702 . . . . . . . . 9 ((((2 · 𝑁)↑𝑀) · 𝐴) ∈ ℝ → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ (1 / 2))
4517, 44syl 17 . . . . . . . 8 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ (1 / 2))
46 halflt1 11858 . . . . . . . . . 10 (1 / 2) < 1
47 1re 10643 . . . . . . . . . . 11 1 ∈ ℝ
4833, 47ltlei 10764 . . . . . . . . . 10 ((1 / 2) < 1 → (1 / 2) ≤ 1)
4946, 48ax-mp 5 . . . . . . . . 9 (1 / 2) ≤ 1
5049a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ≤ 1)
5143, 34, 25, 45, 50letrd 10799 . . . . . . 7 (𝜑 → (abs‘((⌊‘((((2 · 𝑁)↑𝑀) · 𝐴) + (1 / 2))) − (((2 · 𝑁)↑𝑀) · 𝐴))) ≤ 1)
5242, 51eqbrtrd 5090 . . . . . 6 (𝜑 → (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ≤ 1)
5324, 25, 27, 29, 52lemul2ad 11582 . . . . 5 (𝜑 → (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ (((abs‘𝐶)↑𝑀) · 1))
54 ax-1rid 10609 . . . . . 6 (((abs‘𝐶)↑𝑀) ∈ ℝ → (((abs‘𝐶)↑𝑀) · 1) = ((abs‘𝐶)↑𝑀))
5527, 54syl 17 . . . . 5 (𝜑 → (((abs‘𝐶)↑𝑀) · 1) = ((abs‘𝐶)↑𝑀))
5653, 55breqtrd 5094 . . . 4 (𝜑 → (((abs‘𝐶)↑𝑀) · (abs‘(𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((abs‘𝐶)↑𝑀))
5723, 56eqbrtrd 5090 . . 3 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((abs‘𝐶)↑𝑀))
58 eqidd 2824 . . . . 5 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)))
59 oveq2 7166 . . . . . 6 (𝑚 = 𝑀 → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑀))
6059adantl 484 . . . . 5 ((𝜑𝑚 = 𝑀) → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑀))
6158, 60, 3, 27fvmptd 6777 . . . 4 (𝜑 → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀) = ((abs‘𝐶)↑𝑀))
6261eqcomd 2829 . . 3 (𝜑 → ((abs‘𝐶)↑𝑀) = ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
6357, 62breqtrd 5094 . 2 (𝜑 → (abs‘((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
645, 63eqbrtrd 5090 1 (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cfl 13163  cexp 13432  abscabs 14595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597
This theorem is referenced by:  knoppcnlem6  33839
  Copyright terms: Public domain W3C validator