MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logbgcd1irr Structured version   Visualization version   GIF version

Theorem logbgcd1irr 25372
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is an irrational number if the argument and the base are relatively prime. For example, (2 logb 9) ∈ (ℝ ∖ ℚ) (see 2logb9irr 25373). (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irr ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))

Proof of Theorem logbgcd1irr
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 12285 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
21nnrpd 12430 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
323ad2ant2 1130 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝐵 ∈ ℝ+)
4 eluz2nn 12285 . . . . . 6 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
54nnrpd 12430 . . . . 5 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℝ+)
653ad2ant1 1129 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝑋 ∈ ℝ+)
7 eluz2b3 12323 . . . . . 6 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 𝐵 ≠ 1))
87simprbi 499 . . . . 5 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 1)
983ad2ant2 1130 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → 𝐵 ≠ 1)
103, 6, 93jca 1124 . . 3 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1))
11 relogbcl 25351 . . 3 ((𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1) → (𝐵 logb 𝑋) ∈ ℝ)
1210, 11syl 17 . 2 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ ℝ)
13 eluz2gt1 12321 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 1 < 𝑋)
1413adantr 483 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝑋)
154adantr 483 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℕ)
1615nnrpd 12430 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℝ+)
171adantl 484 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℕ)
1817nnrpd 12430 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℝ+)
19 eluz2gt1 12321 . . . . . . . . . . 11 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
2019adantl 484 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝐵)
21 logbgt0b 25371 . . . . . . . . . 10 ((𝑋 ∈ ℝ+ ∧ (𝐵 ∈ ℝ+ ∧ 1 < 𝐵)) → (0 < (𝐵 logb 𝑋) ↔ 1 < 𝑋))
2216, 18, 20, 21syl12anc 834 . . . . . . . . 9 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (0 < (𝐵 logb 𝑋) ↔ 1 < 𝑋))
2314, 22mpbird 259 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 0 < (𝐵 logb 𝑋))
2423anim1ci 617 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝐵 logb 𝑋) ∈ ℚ) → ((𝐵 logb 𝑋) ∈ ℚ ∧ 0 < (𝐵 logb 𝑋)))
25 elpq 12375 . . . . . . 7 (((𝐵 logb 𝑋) ∈ ℚ ∧ 0 < (𝐵 logb 𝑋)) → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛))
2624, 25syl 17 . . . . . 6 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝐵 logb 𝑋) ∈ ℚ) → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛))
2726ex 415 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 logb 𝑋) ∈ ℚ → ∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛)))
28 oveq2 7164 . . . . . . . . . 10 ((𝑚 / 𝑛) = (𝐵 logb 𝑋) → (𝐵𝑐(𝑚 / 𝑛)) = (𝐵𝑐(𝐵 logb 𝑋)))
2928eqcoms 2829 . . . . . . . . 9 ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → (𝐵𝑐(𝑚 / 𝑛)) = (𝐵𝑐(𝐵 logb 𝑋)))
30 eluzelcn 12256 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
3130adantl 484 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℂ)
32 nnne0 11672 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
331, 32syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
3433, 8nelprd 4596 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘2) → ¬ 𝐵 ∈ {0, 1})
3534adantl 484 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ 𝐵 ∈ {0, 1})
3631, 35eldifd 3947 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ (ℂ ∖ {0, 1}))
37 eluzelcn 12256 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℂ)
3837adantr 483 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ ℂ)
39 nnne0 11672 . . . . . . . . . . . . . 14 (𝑋 ∈ ℕ → 𝑋 ≠ 0)
40 nelsn 4605 . . . . . . . . . . . . . 14 (𝑋 ≠ 0 → ¬ 𝑋 ∈ {0})
414, 39, 403syl 18 . . . . . . . . . . . . 13 (𝑋 ∈ (ℤ‘2) → ¬ 𝑋 ∈ {0})
4241adantr 483 . . . . . . . . . . . 12 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ 𝑋 ∈ {0})
4338, 42eldifd 3947 . . . . . . . . . . 11 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝑋 ∈ (ℂ ∖ {0}))
44 cxplogb 25364 . . . . . . . . . . 11 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4536, 43, 44syl2anc 586 . . . . . . . . . 10 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4645adantr 483 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
4729, 46sylan9eqr 2878 . . . . . . . 8 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵 logb 𝑋) = (𝑚 / 𝑛)) → (𝐵𝑐(𝑚 / 𝑛)) = 𝑋)
4847ex 415 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → (𝐵𝑐(𝑚 / 𝑛)) = 𝑋))
49 oveq1 7163 . . . . . . . 8 ((𝐵𝑐(𝑚 / 𝑛)) = 𝑋 → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛))
5031adantr 483 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝐵 ∈ ℂ)
51 nncn 11646 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5251adantr 483 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℂ)
53 nncn 11646 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
5453adantl 484 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
55 nnne0 11672 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
5655adantl 484 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
5752, 54, 563jca 1124 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
58 divcl 11304 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → (𝑚 / 𝑛) ∈ ℂ)
5957, 58syl 17 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑚 / 𝑛) ∈ ℂ)
6059adantl 484 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝑚 / 𝑛) ∈ ℂ)
61 nnnn0 11905 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
6261adantl 484 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
6362adantl 484 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝑛 ∈ ℕ0)
6450, 60, 633jca 1124 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0))
65 cxpmul2 25272 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = ((𝐵𝑐(𝑚 / 𝑛))↑𝑛))
6665eqcomd 2827 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝑚 / 𝑛) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑐((𝑚 / 𝑛) · 𝑛)))
6764, 66syl 17 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑐((𝑚 / 𝑛) · 𝑛)))
6857adantl 484 . . . . . . . . . . . . . 14 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
69 divcan1 11307 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) → ((𝑚 / 𝑛) · 𝑛) = 𝑚)
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑚 / 𝑛) · 𝑛) = 𝑚)
7170oveq2d 7172 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = (𝐵𝑐𝑚))
7233adantl 484 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ≠ 0)
7372adantr 483 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝐵 ≠ 0)
74 nnz 12005 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
7574adantr 483 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℤ)
7675adantl 484 . . . . . . . . . . . . 13 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → 𝑚 ∈ ℤ)
7750, 73, 76cxpexpzd 25294 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐𝑚) = (𝐵𝑚))
7871, 77eqtrd 2856 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵𝑐((𝑚 / 𝑛) · 𝑛)) = (𝐵𝑚))
7967, 78eqtrd 2856 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝐵𝑚))
8079eqeq1d 2823 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛) ↔ (𝐵𝑚) = (𝑋𝑛)))
81 simpr 487 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
82 rplpwr 15907 . . . . . . . . . . . 12 ((𝑋 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑛) gcd 𝐵) = 1))
8315, 17, 81, 82syl2an3an 1418 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑋 gcd 𝐵) = 1 → ((𝑋𝑛) gcd 𝐵) = 1))
84 oveq1 7163 . . . . . . . . . . . . . . . . 17 ((𝑋𝑛) = (𝐵𝑚) → ((𝑋𝑛) gcd 𝐵) = ((𝐵𝑚) gcd 𝐵))
8584eqeq1d 2823 . . . . . . . . . . . . . . . 16 ((𝑋𝑛) = (𝐵𝑚) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
8685eqcoms 2829 . . . . . . . . . . . . . . 15 ((𝐵𝑚) = (𝑋𝑛) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
8786adantl 484 . . . . . . . . . . . . . 14 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝑋𝑛) gcd 𝐵) = 1 ↔ ((𝐵𝑚) gcd 𝐵) = 1))
88 eluzelz 12254 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
8988adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
90 simpl 485 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℕ)
91 rpexp 16064 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑚 ∈ ℕ) → (((𝐵𝑚) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
9289, 89, 90, 91syl2an3an 1418 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑚) gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐵) = 1))
93 gcdid 15875 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℤ → (𝐵 gcd 𝐵) = (abs‘𝐵))
9488, 93syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (ℤ‘2) → (𝐵 gcd 𝐵) = (abs‘𝐵))
95 eluzelre 12255 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
96 nnnn0 11905 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
97 nn0ge0 11923 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
981, 96, 973syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
9995, 98absidd 14782 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ (ℤ‘2) → (abs‘𝐵) = 𝐵)
10094, 99eqtrd 2856 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ (ℤ‘2) → (𝐵 gcd 𝐵) = 𝐵)
101100eqeq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (ℤ‘2) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
102101adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
103102adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 gcd 𝐵) = 1 ↔ 𝐵 = 1))
104 eqneqall 3027 . . . . . . . . . . . . . . . . . . . 20 (𝐵 = 1 → (𝐵 ≠ 1 → ¬ (𝑋 gcd 𝐵) = 1))
1058, 104syl5com 31 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (ℤ‘2) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
106105adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
107106adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (𝐵 = 1 → ¬ (𝑋 gcd 𝐵) = 1))
108103, 107sylbid 242 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
10992, 108sylbid 242 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑚) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
110109adantr 483 . . . . . . . . . . . . . 14 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝐵𝑚) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
11187, 110sylbid 242 . . . . . . . . . . . . 13 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝐵𝑚) = (𝑋𝑛)) → (((𝑋𝑛) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1))
112111ex 415 . . . . . . . . . . . 12 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑚) = (𝑋𝑛) → (((𝑋𝑛) gcd 𝐵) = 1 → ¬ (𝑋 gcd 𝐵) = 1)))
113112com23 86 . . . . . . . . . . 11 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑋𝑛) gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1)))
11483, 113syld 47 . . . . . . . . . 10 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝑋 gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1)))
115 ax-1 6 . . . . . . . . . 10 (¬ (𝑋 gcd 𝐵) = 1 → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
116114, 115pm2.61d1 182 . . . . . . . . 9 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑚) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
11780, 116sylbid 242 . . . . . . . 8 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝐵𝑐(𝑚 / 𝑛))↑𝑛) = (𝑋𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
11849, 117syl5 34 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵𝑐(𝑚 / 𝑛)) = 𝑋 → ¬ (𝑋 gcd 𝐵) = 1))
11948, 118syld 47 . . . . . 6 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐵 logb 𝑋) = (𝑚 / 𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
120119rexlimdvva 3294 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (𝐵 logb 𝑋) = (𝑚 / 𝑛) → ¬ (𝑋 gcd 𝐵) = 1))
12127, 120syld 47 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐵 logb 𝑋) ∈ ℚ → ¬ (𝑋 gcd 𝐵) = 1))
122121con2d 136 . . 3 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝑋 gcd 𝐵) = 1 → ¬ (𝐵 logb 𝑋) ∈ ℚ))
1231223impia 1113 . 2 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → ¬ (𝐵 logb 𝑋) ∈ ℚ)
12412, 123eldifd 3947 1 ((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  cdif 3933  {csn 4567  {cpr 4569   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542   < clt 10675  cle 10676   / cdiv 11297  cn 11638  2c2 11693  0cn0 11898  cz 11982  cuz 12244  cq 12349  +crp 12390  cexp 13430  abscabs 14593   gcd cgcd 15843  𝑐ccxp 25139   logb clogb 25342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-dvds 15608  df-gcd 15844  df-prm 16016  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-cxp 25141  df-logb 25343
This theorem is referenced by:  2logb9irr  25373  logbprmirr  25374
  Copyright terms: Public domain W3C validator