MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcj Structured version   Visualization version   GIF version

Theorem logcj 24290
Description: The natural logarithm distributes under conjugation away from the branch cut. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
logcj ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴)))

Proof of Theorem logcj
StepHypRef Expression
1 fveq2 6158 . . . . . . 7 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
2 im0 13843 . . . . . . 7 (ℑ‘0) = 0
31, 2syl6eq 2671 . . . . . 6 (𝐴 = 0 → (ℑ‘𝐴) = 0)
43necon3i 2822 . . . . 5 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5 logcl 24253 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
64, 5sylan2 491 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘𝐴) ∈ ℂ)
7 efcj 14766 . . . 4 ((log‘𝐴) ∈ ℂ → (exp‘(∗‘(log‘𝐴))) = (∗‘(exp‘(log‘𝐴))))
86, 7syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (exp‘(∗‘(log‘𝐴))) = (∗‘(exp‘(log‘𝐴))))
9 eflog 24261 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
104, 9sylan2 491 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
1110fveq2d 6162 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘(exp‘(log‘𝐴))) = (∗‘𝐴))
128, 11eqtrd 2655 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴))
13 cjcl 13795 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
1413adantr 481 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ ℂ)
15 simpr 477 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘𝐴) ≠ 0)
1615, 4syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → 𝐴 ≠ 0)
17 cjne0 13853 . . . . 5 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
1817adantr 481 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
1916, 18mpbid 222 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘𝐴) ≠ 0)
206cjcld 13886 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘(log‘𝐴)) ∈ ℂ)
21 rpre 11799 . . . . . . . . . . . . 13 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
2221renegcld 10417 . . . . . . . . . . . 12 (-𝐴 ∈ ℝ+ → --𝐴 ∈ ℝ)
23 negneg 10291 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
2423adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → --𝐴 = 𝐴)
2524eleq1d 2683 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (--𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
2622, 25syl5ib 234 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
27 lognegb 24274 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
284, 27sylan2 491 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
29 reim0b 13809 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
3029adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
3126, 28, 303imtr3d 282 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘(log‘𝐴)) = π → (ℑ‘𝐴) = 0))
3231necon3d 2811 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘𝐴) ≠ 0 → (ℑ‘(log‘𝐴)) ≠ π))
3315, 32mpd 15 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ≠ π)
3433necomd 2845 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → π ≠ (ℑ‘(log‘𝐴)))
356imcld 13885 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
36 pire 24148 . . . . . . . . 9 π ∈ ℝ
3736a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → π ∈ ℝ)
38 logimcl 24254 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
394, 38sylan2 491 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4039simprd 479 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
4135, 37, 40leltned 10150 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘(log‘𝐴)) < π ↔ π ≠ (ℑ‘(log‘𝐴))))
4234, 41mpbird 247 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) < π)
43 ltneg 10488 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
4435, 36, 43sylancl 693 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
4542, 44mpbid 222 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π < -(ℑ‘(log‘𝐴)))
466imcjd 13895 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(∗‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)))
4745, 46breqtrrd 4651 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π < (ℑ‘(∗‘(log‘𝐴))))
4839simpld 475 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π < (ℑ‘(log‘𝐴)))
4936renegcli 10302 . . . . . . . 8 -π ∈ ℝ
50 ltle 10086 . . . . . . . 8 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5149, 35, 50sylancr 694 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5248, 51mpd 15 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
53 lenegcon1 10492 . . . . . . 7 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π ≤ (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) ≤ π))
5436, 35, 53sylancr 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-π ≤ (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) ≤ π))
5552, 54mpbid 222 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -(ℑ‘(log‘𝐴)) ≤ π)
5646, 55eqbrtrd 4645 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(∗‘(log‘𝐴))) ≤ π)
57 ellogrn 24244 . . . 4 ((∗‘(log‘𝐴)) ∈ ran log ↔ ((∗‘(log‘𝐴)) ∈ ℂ ∧ -π < (ℑ‘(∗‘(log‘𝐴))) ∧ (ℑ‘(∗‘(log‘𝐴))) ≤ π))
5820, 47, 56, 57syl3anbrc 1244 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘(log‘𝐴)) ∈ ran log)
59 logeftb 24268 . . 3 (((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐴) ≠ 0 ∧ (∗‘(log‘𝐴)) ∈ ran log) → ((log‘(∗‘𝐴)) = (∗‘(log‘𝐴)) ↔ (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴)))
6014, 19, 58, 59syl3anc 1323 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((log‘(∗‘𝐴)) = (∗‘(log‘𝐴)) ↔ (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴)))
6112, 60mpbird 247 1 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4623  ran crn 5085  cfv 5857  cc 9894  cr 9895  0cc0 9896   < clt 10034  cle 10035  -cneg 10227  +crp 11792  ccj 13786  cim 13788  expce 14736  πcpi 14741  logclog 24239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ioc 12138  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-fac 13017  df-bc 13046  df-hash 13074  df-shft 13757  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-sum 14367  df-ef 14742  df-sin 14744  df-cos 14745  df-pi 14747  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lp 20880  df-perf 20881  df-cn 20971  df-cnp 20972  df-haus 21059  df-tx 21305  df-hmeo 21498  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-tms 22067  df-cncf 22621  df-limc 23570  df-dv 23571  df-log 24241
This theorem is referenced by:  argimlt0  24297  isosctrlem2  24483  atancj  24571
  Copyright terms: Public domain W3C validator