MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leneltd Structured version   Visualization version   GIF version

Theorem leneltd 10151
Description: 'Less than or equal to' and 'not equals' implies 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
leltned.3 (𝜑𝐴𝐵)
leneltd.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
leneltd (𝜑𝐴 < 𝐵)

Proof of Theorem leneltd
StepHypRef Expression
1 leneltd.4 . 2 (𝜑𝐵𝐴)
2 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 leltned.3 . . 3 (𝜑𝐴𝐵)
52, 3, 4leltned 10150 . 2 (𝜑 → (𝐴 < 𝐵𝐵𝐴))
61, 5mpbird 247 1 (𝜑𝐴 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987  wne 2790   class class class wbr 4623  cr 9895   < clt 10034  cle 10035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-resscn 9953  ax-pre-lttri 9970  ax-pre-lttrn 9971
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040
This theorem is referenced by:  flltnz  12568  fprodle  14671  unbdqndv2lem2  32196  fzdifsuc2  39024  xralrple2  39069  xralrple3  39089  eliccelioc  39193  limcresiooub  39310  limcresioolb  39311  icccncfext  39435  cncfiooiccre  39443  dvbdfbdioolem2  39481  dvnxpaek  39494  volioc  39525  itgioocnicc  39530  iblcncfioo  39531  dirkercncflem1  39657  fourierdlem24  39685  fourierdlem25  39686  fourierdlem32  39693  fourierdlem33  39694  fourierdlem41  39702  fourierdlem42  39703  fourierdlem46  39706  fourierdlem48  39708  fourierdlem49  39709  fourierdlem51  39711  fourierdlem64  39724  fourierdlem65  39725  fourierdlem73  39733  fourierdlem76  39736  fourierdlem79  39739  fourierdlem81  39741  fourierdlem82  39742  fourierdlem89  39749  fourierdlem91  39751  fourierdlem102  39762  fourierdlem114  39774  fourierswlem  39784  fouriersw  39785  etransclem15  39803  etransclem24  39812  etransclem25  39813  etransclem35  39823  iundjiun  40014  hoidmvlelem2  40147
  Copyright terms: Public domain W3C validator