MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maducoeval2 Structured version   Visualization version   GIF version

Theorem maducoeval2 20494
Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 17-Jul-2018.)
Hypotheses
Ref Expression
madufval.a 𝐴 = (𝑁 Mat 𝑅)
madufval.d 𝐷 = (𝑁 maDet 𝑅)
madufval.j 𝐽 = (𝑁 maAdju 𝑅)
madufval.b 𝐵 = (Base‘𝐴)
madufval.o 1 = (1r𝑅)
madufval.z 0 = (0g𝑅)
Assertion
Ref Expression
maducoeval2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑅,𝑘,𝑙   𝑘,𝑀,𝑙   𝑘,𝐼,𝑙   𝑘,𝐻,𝑙   𝐵,𝑘,𝑙   0 ,𝑘   1 ,𝑘
Allowed substitution hints:   𝐴(𝑘,𝑙)   𝐷(𝑘,𝑙)   1 (𝑙)   𝐽(𝑘,𝑙)   0 (𝑙)

Proof of Theorem maducoeval2
Dummy variables 𝑛 𝑟 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2719 . . . . . . . 8 (𝑚 = ∅ → (𝑘𝑚𝑘 ∈ ∅))
21ifbid 4141 . . . . . . 7 (𝑚 = ∅ → if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
32ifeq2d 4138 . . . . . 6 (𝑚 = ∅ → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
43mpt2eq3dv 6763 . . . . 5 (𝑚 = ∅ → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))
54fveq2d 6233 . . . 4 (𝑚 = ∅ → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
65eqeq2d 2661 . . 3 (𝑚 = ∅ → ((𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
7 eleq2 2719 . . . . . . . 8 (𝑚 = 𝑛 → (𝑘𝑚𝑘𝑛))
87ifbid 4141 . . . . . . 7 (𝑚 = 𝑛 → if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
98ifeq2d 4138 . . . . . 6 (𝑚 = 𝑛 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
109mpt2eq3dv 6763 . . . . 5 (𝑚 = 𝑛 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))
1110fveq2d 6233 . . . 4 (𝑚 = 𝑛 → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
1211eqeq2d 2661 . . 3 (𝑚 = 𝑛 → ((𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
13 eleq2 2719 . . . . . . . 8 (𝑚 = (𝑛 ∪ {𝑟}) → (𝑘𝑚𝑘 ∈ (𝑛 ∪ {𝑟})))
1413ifbid 4141 . . . . . . 7 (𝑚 = (𝑛 ∪ {𝑟}) → if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
1514ifeq2d 4138 . . . . . 6 (𝑚 = (𝑛 ∪ {𝑟}) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
1615mpt2eq3dv 6763 . . . . 5 (𝑚 = (𝑛 ∪ {𝑟}) → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))
1716fveq2d 6233 . . . 4 (𝑚 = (𝑛 ∪ {𝑟}) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
1817eqeq2d 2661 . . 3 (𝑚 = (𝑛 ∪ {𝑟}) → ((𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
19 eleq2 2719 . . . . . . . 8 (𝑚 = (𝑁 ∖ {𝐻}) → (𝑘𝑚𝑘 ∈ (𝑁 ∖ {𝐻})))
2019ifbid 4141 . . . . . . 7 (𝑚 = (𝑁 ∖ {𝐻}) → if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
2120ifeq2d 4138 . . . . . 6 (𝑚 = (𝑁 ∖ {𝐻}) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
2221mpt2eq3dv 6763 . . . . 5 (𝑚 = (𝑁 ∖ {𝐻}) → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))
2322fveq2d 6233 . . . 4 (𝑚 = (𝑁 ∖ {𝐻}) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
2423eqeq2d 2661 . . 3 (𝑚 = (𝑁 ∖ {𝐻}) → ((𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
25 madufval.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
26 madufval.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
27 madufval.j . . . . . 6 𝐽 = (𝑁 maAdju 𝑅)
28 madufval.b . . . . . 6 𝐵 = (Base‘𝐴)
29 madufval.o . . . . . 6 1 = (1r𝑅)
30 madufval.z . . . . . 6 0 = (0g𝑅)
3125, 26, 27, 28, 29, 30maducoeval 20493 . . . . 5 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
32313adant1l 1358 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
33 noel 3952 . . . . . . . 8 ¬ 𝑘 ∈ ∅
34 iffalse 4128 . . . . . . . 8 𝑘 ∈ ∅ → if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = (𝑘𝑀𝑙))
3533, 34mp1i 13 . . . . . . 7 ((𝑘𝑁𝑙𝑁) → if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = (𝑘𝑀𝑙))
3635ifeq2d 4138 . . . . . 6 ((𝑘𝑁𝑙𝑁) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))
3736mpt2eq3ia 6762 . . . . 5 (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))
3837fveq2i 6232 . . . 4 (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))
3932, 38syl6eqr 2703 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
40 eqid 2651 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
41 eqid 2651 . . . . . . 7 (+g𝑅) = (+g𝑅)
42 eqid 2651 . . . . . . 7 (.r𝑅) = (.r𝑅)
43 simpl1l 1132 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑅 ∈ CRing)
44 simp1r 1106 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → 𝑀𝐵)
4525, 28matrcl 20266 . . . . . . . . . 10 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
4645simpld 474 . . . . . . . . 9 (𝑀𝐵𝑁 ∈ Fin)
4744, 46syl 17 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → 𝑁 ∈ Fin)
4847adantr 480 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑁 ∈ Fin)
49 simp1l 1105 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → 𝑅 ∈ CRing)
5049ad2antrr 762 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 𝑅 ∈ CRing)
51 crngring 18604 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5250, 51syl 17 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 𝑅 ∈ Ring)
5340, 30ring0cl 18615 . . . . . . . . 9 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
5452, 53syl 17 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 0 ∈ (Base‘𝑅))
55 simpl1r 1133 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑀𝐵)
5625, 40, 28matbas2i 20276 . . . . . . . . . . 11 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
57 elmapi 7921 . . . . . . . . . . 11 (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
5855, 56, 573syl 18 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
5958adantr 480 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
60 eldifi 3765 . . . . . . . . . . . 12 (𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛) → 𝑟 ∈ (𝑁 ∖ {𝐻}))
6160ad2antll 765 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑟 ∈ (𝑁 ∖ {𝐻}))
6261eldifad 3619 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑟𝑁)
6362adantr 480 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 𝑟𝑁)
64 simpr 476 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 𝑙𝑁)
6559, 63, 64fovrnd 6848 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → (𝑟𝑀𝑙) ∈ (Base‘𝑅))
6654, 65ifcld 4164 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) ∈ (Base‘𝑅))
6740, 29ringidcl 18614 . . . . . . . . 9 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
6852, 67syl 17 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 1 ∈ (Base‘𝑅))
6968, 54ifcld 4164 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if(𝑙 = 𝐼, 1 , 0 ) ∈ (Base‘𝑅))
70543adant2 1100 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → 0 ∈ (Base‘𝑅))
7158fovrnda 6847 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ (𝑘𝑁𝑙𝑁)) → (𝑘𝑀𝑙) ∈ (Base‘𝑅))
72713impb 1279 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → (𝑘𝑀𝑙) ∈ (Base‘𝑅))
7370, 72ifcld 4164 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) ∈ (Base‘𝑅))
7473, 72ifcld 4164 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) ∈ (Base‘𝑅))
75 simpl2 1085 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝐼𝑁)
7658, 62, 75fovrnd 6848 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝑟𝑀𝐼) ∈ (Base‘𝑅))
77 simpl3 1086 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝐻𝑁)
78 eldifsni 4353 . . . . . . . 8 (𝑟 ∈ (𝑁 ∖ {𝐻}) → 𝑟𝐻)
7961, 78syl 17 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑟𝐻)
8026, 40, 41, 42, 43, 48, 66, 69, 74, 76, 62, 77, 79mdetero 20464 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
81 ifnot 4166 . . . . . . . . . . . . . . . . 17 if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ) = if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))
8281eqcomi 2660 . . . . . . . . . . . . . . . 16 if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) = if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )
8382a1i 11 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) = if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))
84 ovif2 6780 . . . . . . . . . . . . . . . 16 ((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 )) = if(𝑙 = 𝐼, ((𝑟𝑀𝐼)(.r𝑅) 1 ), ((𝑟𝑀𝐼)(.r𝑅) 0 ))
8576adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → (𝑟𝑀𝐼) ∈ (Base‘𝑅))
8640, 42, 29ringridm 18618 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ (𝑟𝑀𝐼) ∈ (Base‘𝑅)) → ((𝑟𝑀𝐼)(.r𝑅) 1 ) = (𝑟𝑀𝐼))
8752, 85, 86syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → ((𝑟𝑀𝐼)(.r𝑅) 1 ) = (𝑟𝑀𝐼))
8887adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) ∧ 𝑙 = 𝐼) → ((𝑟𝑀𝐼)(.r𝑅) 1 ) = (𝑟𝑀𝐼))
89 oveq2 6698 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝐼 → (𝑟𝑀𝑙) = (𝑟𝑀𝐼))
9089adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) ∧ 𝑙 = 𝐼) → (𝑟𝑀𝑙) = (𝑟𝑀𝐼))
9188, 90eqtr4d 2688 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) ∧ 𝑙 = 𝐼) → ((𝑟𝑀𝐼)(.r𝑅) 1 ) = (𝑟𝑀𝑙))
9291ifeq1da 4149 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if(𝑙 = 𝐼, ((𝑟𝑀𝐼)(.r𝑅) 1 ), ((𝑟𝑀𝐼)(.r𝑅) 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), ((𝑟𝑀𝐼)(.r𝑅) 0 )))
9340, 42, 30ringrz 18634 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝑟𝑀𝐼) ∈ (Base‘𝑅)) → ((𝑟𝑀𝐼)(.r𝑅) 0 ) = 0 )
9452, 85, 93syl2anc 694 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → ((𝑟𝑀𝐼)(.r𝑅) 0 ) = 0 )
9594ifeq2d 4138 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if(𝑙 = 𝐼, (𝑟𝑀𝑙), ((𝑟𝑀𝐼)(.r𝑅) 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))
9692, 95eqtrd 2685 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if(𝑙 = 𝐼, ((𝑟𝑀𝐼)(.r𝑅) 1 ), ((𝑟𝑀𝐼)(.r𝑅) 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))
9784, 96syl5eq 2697 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → ((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))
9883, 97oveq12d 6708 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )(+g𝑅)if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )))
99 ringmnd 18602 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
10052, 99syl 17 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 𝑅 ∈ Mnd)
101 id 22 . . . . . . . . . . . . . . . . 17 𝑙 = 𝐼 → ¬ 𝑙 = 𝐼)
102 imnan 437 . . . . . . . . . . . . . . . . 17 ((¬ 𝑙 = 𝐼 → ¬ 𝑙 = 𝐼) ↔ ¬ (¬ 𝑙 = 𝐼𝑙 = 𝐼))
103101, 102mpbi 220 . . . . . . . . . . . . . . . 16 ¬ (¬ 𝑙 = 𝐼𝑙 = 𝐼)
104103a1i 11 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → ¬ (¬ 𝑙 = 𝐼𝑙 = 𝐼))
10540, 30, 41mndifsplit 20490 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Mnd ∧ (𝑟𝑀𝑙) ∈ (Base‘𝑅) ∧ ¬ (¬ 𝑙 = 𝐼𝑙 = 𝐼)) → if((¬ 𝑙 = 𝐼𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )(+g𝑅)if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )))
106100, 65, 104, 105syl3anc 1366 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if((¬ 𝑙 = 𝐼𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )(+g𝑅)if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )))
107 pm2.1 432 . . . . . . . . . . . . . . 15 𝑙 = 𝐼𝑙 = 𝐼)
108 iftrue 4125 . . . . . . . . . . . . . . 15 ((¬ 𝑙 = 𝐼𝑙 = 𝐼) → if((¬ 𝑙 = 𝐼𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (𝑟𝑀𝑙))
109107, 108mp1i 13 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if((¬ 𝑙 = 𝐼𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (𝑟𝑀𝑙))
11098, 106, 1093eqtr2d 2691 . . . . . . . . . . . . 13 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑟𝑀𝑙))
1111103adant2 1100 . . . . . . . . . . . 12 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑟𝑀𝑙))
112 oveq1 6697 . . . . . . . . . . . . 13 (𝑘 = 𝑟 → (𝑘𝑀𝑙) = (𝑟𝑀𝑙))
113112eqeq2d 2661 . . . . . . . . . . . 12 (𝑘 = 𝑟 → ((if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑘𝑀𝑙) ↔ (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑟𝑀𝑙)))
114111, 113syl5ibrcom 237 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → (𝑘 = 𝑟 → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑘𝑀𝑙)))
115114imp 444 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑘𝑀𝑙))
116 iftrue 4125 . . . . . . . . . . 11 (𝑘 = 𝑟 → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))))
117116adantl 481 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))))
11879neneqd 2828 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ¬ 𝑟 = 𝐻)
1191183ad2ant1 1102 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → ¬ 𝑟 = 𝐻)
120 eqeq1 2655 . . . . . . . . . . . . . . 15 (𝑘 = 𝑟 → (𝑘 = 𝐻𝑟 = 𝐻))
121120notbid 307 . . . . . . . . . . . . . 14 (𝑘 = 𝑟 → (¬ 𝑘 = 𝐻 ↔ ¬ 𝑟 = 𝐻))
122119, 121syl5ibrcom 237 . . . . . . . . . . . . 13 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → (𝑘 = 𝑟 → ¬ 𝑘 = 𝐻))
123122imp 444 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → ¬ 𝑘 = 𝐻)
124123iffalsed 4130 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
125 eldifn 3766 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛) → ¬ 𝑟𝑛)
126125ad2antll 765 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ¬ 𝑟𝑛)
1271263ad2ant1 1102 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → ¬ 𝑟𝑛)
128 eleq1 2718 . . . . . . . . . . . . . . 15 (𝑘 = 𝑟 → (𝑘𝑛𝑟𝑛))
129128notbid 307 . . . . . . . . . . . . . 14 (𝑘 = 𝑟 → (¬ 𝑘𝑛 ↔ ¬ 𝑟𝑛))
130127, 129syl5ibrcom 237 . . . . . . . . . . . . 13 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → (𝑘 = 𝑟 → ¬ 𝑘𝑛))
131130imp 444 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → ¬ 𝑘𝑛)
132131iffalsed 4130 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = (𝑘𝑀𝑙))
133124, 132eqtrd 2685 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = (𝑘𝑀𝑙))
134115, 117, 1333eqtr4d 2695 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
135 iffalse 4128 . . . . . . . . . 10 𝑘 = 𝑟 → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
136135adantl 481 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝑟) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
137134, 136pm2.61dan 849 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
138137mpt2eq3dva 6761 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))
139138fveq2d 6233 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
140 neeq2 2886 . . . . . . . . . . . . . . 15 (𝑘 = 𝐻 → (𝑟𝑘𝑟𝐻))
141140biimparc 503 . . . . . . . . . . . . . 14 ((𝑟𝐻𝑘 = 𝐻) → 𝑟𝑘)
142141necomd 2878 . . . . . . . . . . . . 13 ((𝑟𝐻𝑘 = 𝐻) → 𝑘𝑟)
143142neneqd 2828 . . . . . . . . . . . 12 ((𝑟𝐻𝑘 = 𝐻) → ¬ 𝑘 = 𝑟)
144143iffalsed 4130 . . . . . . . . . . 11 ((𝑟𝐻𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑙 = 𝐼, 1 , 0 )) = if(𝑙 = 𝐼, 1 , 0 ))
145 iftrue 4125 . . . . . . . . . . . . 13 (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 ))
146145adantl 481 . . . . . . . . . . . 12 ((𝑟𝐻𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 ))
147146ifeq2d 4138 . . . . . . . . . . 11 ((𝑟𝐻𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑙 = 𝐼, 1 , 0 )))
148 iftrue 4125 . . . . . . . . . . . 12 (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 ))
149148adantl 481 . . . . . . . . . . 11 ((𝑟𝐻𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 ))
150144, 147, 1493eqtr4d 2695 . . . . . . . . . 10 ((𝑟𝐻𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
151112ifeq2d 4138 . . . . . . . . . . . . . 14 (𝑘 = 𝑟 → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) = if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)))
152 vsnid 4242 . . . . . . . . . . . . . . . . 17 𝑟 ∈ {𝑟}
153 elun2 3814 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ {𝑟} → 𝑟 ∈ (𝑛 ∪ {𝑟}))
154152, 153ax-mp 5 . . . . . . . . . . . . . . . 16 𝑟 ∈ (𝑛 ∪ {𝑟})
155 eleq1 2718 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑟 → (𝑘 ∈ (𝑛 ∪ {𝑟}) ↔ 𝑟 ∈ (𝑛 ∪ {𝑟})))
156154, 155mpbiri 248 . . . . . . . . . . . . . . 15 (𝑘 = 𝑟𝑘 ∈ (𝑛 ∪ {𝑟}))
157156iftrued 4127 . . . . . . . . . . . . . 14 (𝑘 = 𝑟 → if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)))
158 iftrue 4125 . . . . . . . . . . . . . 14 (𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)))
159151, 157, 1583eqtr4rd 2696 . . . . . . . . . . . . 13 (𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
160159adantl 481 . . . . . . . . . . . 12 (((𝑟𝐻 ∧ ¬ 𝑘 = 𝐻) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
161 iffalse 4128 . . . . . . . . . . . . . 14 𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
162 orc 399 . . . . . . . . . . . . . . . . 17 (𝑘𝑛 → (𝑘𝑛𝑘 = 𝑟))
163 orel2 397 . . . . . . . . . . . . . . . . 17 𝑘 = 𝑟 → ((𝑘𝑛𝑘 = 𝑟) → 𝑘𝑛))
164162, 163impbid2 216 . . . . . . . . . . . . . . . 16 𝑘 = 𝑟 → (𝑘𝑛 ↔ (𝑘𝑛𝑘 = 𝑟)))
165 elun 3786 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑛 ∪ {𝑟}) ↔ (𝑘𝑛𝑘 ∈ {𝑟}))
166 velsn 4226 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ {𝑟} ↔ 𝑘 = 𝑟)
167166orbi2i 540 . . . . . . . . . . . . . . . . 17 ((𝑘𝑛𝑘 ∈ {𝑟}) ↔ (𝑘𝑛𝑘 = 𝑟))
168165, 167bitr2i 265 . . . . . . . . . . . . . . . 16 ((𝑘𝑛𝑘 = 𝑟) ↔ 𝑘 ∈ (𝑛 ∪ {𝑟}))
169164, 168syl6bb 276 . . . . . . . . . . . . . . 15 𝑘 = 𝑟 → (𝑘𝑛𝑘 ∈ (𝑛 ∪ {𝑟})))
170169ifbid 4141 . . . . . . . . . . . . . 14 𝑘 = 𝑟 → if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
171161, 170eqtrd 2685 . . . . . . . . . . . . 13 𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
172171adantl 481 . . . . . . . . . . . 12 (((𝑟𝐻 ∧ ¬ 𝑘 = 𝐻) ∧ ¬ 𝑘 = 𝑟) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
173160, 172pm2.61dan 849 . . . . . . . . . . 11 ((𝑟𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
174 iffalse 4128 . . . . . . . . . . . . 13 𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
175174ifeq2d 4138 . . . . . . . . . . . 12 𝑘 = 𝐻 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
176175adantl 481 . . . . . . . . . . 11 ((𝑟𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
177 iffalse 4128 . . . . . . . . . . . 12 𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
178177adantl 481 . . . . . . . . . . 11 ((𝑟𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
179173, 176, 1783eqtr4d 2695 . . . . . . . . . 10 ((𝑟𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
180150, 179pm2.61dan 849 . . . . . . . . 9 (𝑟𝐻 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
181180mpt2eq3dv 6763 . . . . . . . 8 (𝑟𝐻 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))
182181fveq2d 6233 . . . . . . 7 (𝑟𝐻 → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
18379, 182syl 17 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
18480, 139, 1833eqtr3d 2693 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
185184eqeq2d 2661 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ((𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
186185biimpd 219 . . 3 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ((𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
187 difss 3770 . . . 4 (𝑁 ∖ {𝐻}) ⊆ 𝑁
188 ssfi 8221 . . . 4 ((𝑁 ∈ Fin ∧ (𝑁 ∖ {𝐻}) ⊆ 𝑁) → (𝑁 ∖ {𝐻}) ∈ Fin)
18947, 187, 188sylancl 695 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → (𝑁 ∖ {𝐻}) ∈ Fin)
1906, 12, 18, 24, 39, 186, 189findcard2d 8243 . 2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
191 iba 523 . . . . . . . 8 (𝑘 = 𝐻 → (𝑙 = 𝐼 ↔ (𝑙 = 𝐼𝑘 = 𝐻)))
192191ifbid 4141 . . . . . . 7 (𝑘 = 𝐻 → if(𝑙 = 𝐼, 1 , 0 ) = if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ))
193 iftrue 4125 . . . . . . 7 (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 ))
194 iftrue 4125 . . . . . . . 8 ((𝑘 = 𝐻𝑙 = 𝐼) → if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)) = if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ))
195194orcs 408 . . . . . . 7 (𝑘 = 𝐻 → if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)) = if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ))
196192, 193, 1953eqtr4d 2695 . . . . . 6 (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
197196adantl 481 . . . . 5 (((𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
198 iffalse 4128 . . . . . . 7 𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
199198adantl 481 . . . . . 6 (((𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
200 id 22 . . . . . . . . . . 11 𝑘 = 𝐻 → ¬ 𝑘 = 𝐻)
201200neqned 2830 . . . . . . . . . 10 𝑘 = 𝐻𝑘𝐻)
202201anim2i 592 . . . . . . . . 9 ((𝑘𝑁 ∧ ¬ 𝑘 = 𝐻) → (𝑘𝑁𝑘𝐻))
203202adantlr 751 . . . . . . . 8 (((𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝐻) → (𝑘𝑁𝑘𝐻))
204 eldifsn 4350 . . . . . . . 8 (𝑘 ∈ (𝑁 ∖ {𝐻}) ↔ (𝑘𝑁𝑘𝐻))
205203, 204sylibr 224 . . . . . . 7 (((𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝐻) → 𝑘 ∈ (𝑁 ∖ {𝐻}))
206205iftrued 4127 . . . . . 6 (((𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)))
207 biorf 419 . . . . . . . 8 𝑘 = 𝐻 → (𝑙 = 𝐼 ↔ (𝑘 = 𝐻𝑙 = 𝐼)))
208200intnand 982 . . . . . . . . . 10 𝑘 = 𝐻 → ¬ (𝑙 = 𝐼𝑘 = 𝐻))
209208iffalsed 4130 . . . . . . . . 9 𝑘 = 𝐻 → if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ) = 0 )
210209eqcomd 2657 . . . . . . . 8 𝑘 = 𝐻0 = if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ))
211207, 210ifbieq1d 4142 . . . . . . 7 𝑘 = 𝐻 → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) = if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
212211adantl 481 . . . . . 6 (((𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) = if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
213199, 206, 2123eqtrd 2689 . . . . 5 (((𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
214197, 213pm2.61dan 849 . . . 4 ((𝑘𝑁𝑙𝑁) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
215214mpt2eq3ia 6762 . . 3 (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘𝑁, 𝑙𝑁 ↦ if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
216215fveq2i 6232 . 2 (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))))
217190, 216syl6eq 2701 1 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  cdif 3604  cun 3605  wss 3607  c0 3948  ifcif 4119  {csn 4210   × cxp 5141  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899  Fincfn 7997  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  0gc0g 16147  Mndcmnd 17341  1rcur 18547  Ringcrg 18593  CRingccrg 18594   Mat cmat 20261   maDet cmdat 20438   maAdju cmadu 20486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-xor 1505  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-word 13331  df-lsw 13332  df-concat 13333  df-s1 13334  df-substr 13335  df-splice 13336  df-reverse 13337  df-s2 13639  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-subg 17638  df-ghm 17705  df-gim 17748  df-cntz 17796  df-oppg 17822  df-symg 17844  df-pmtr 17908  df-psgn 17957  df-evpm 17958  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-subrg 18826  df-sra 19220  df-rgmod 19221  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-dsmm 20124  df-frlm 20139  df-mat 20262  df-mdet 20439  df-madu 20488
This theorem is referenced by:  madutpos  20496
  Copyright terms: Public domain W3C validator