MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  methaus Structured version   Visualization version   GIF version

Theorem methaus 22546
Description: The topology generated by a metric space is Hausdorff. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
methaus (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)

Proof of Theorem methaus
Dummy variables 𝑛 𝑑 𝑥 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopnex 22545 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
3 metxmet 22360 . . . . . . . . . 10 (𝑑 ∈ (Met‘𝑋) → 𝑑 ∈ (∞Met‘𝑋))
43ad2antrr 764 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑑 ∈ (∞Met‘𝑋))
5 simplrl 819 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑥𝑋)
6 metcl 22358 . . . . . . . . . . . . . 14 ((𝑑 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑑𝑦) ∈ ℝ)
763expb 1114 . . . . . . . . . . . . 13 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑑𝑦) ∈ ℝ)
87adantr 472 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℝ)
9 metgt0 22385 . . . . . . . . . . . . . 14 ((𝑑 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑦 ↔ 0 < (𝑥𝑑𝑦)))
1093expb 1114 . . . . . . . . . . . . 13 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑦 ↔ 0 < (𝑥𝑑𝑦)))
1110biimpa 502 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 0 < (𝑥𝑑𝑦))
128, 11elrpd 12082 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℝ+)
1312rphalfcld 12097 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ+)
1413rpxrd 12086 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ*)
15 eqid 2760 . . . . . . . . . 10 (MetOpen‘𝑑) = (MetOpen‘𝑑)
1615blopn 22526 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ*) → (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
174, 5, 14, 16syl3anc 1477 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
18 simplrr 820 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑦𝑋)
1915blopn 22526 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ*) → (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
204, 18, 14, 19syl3anc 1477 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
21 blcntr 22439 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
224, 5, 13, 21syl3anc 1477 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
23 blcntr 22439 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
244, 18, 13, 23syl3anc 1477 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
2513rpred 12085 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ)
26 rexadd 12276 . . . . . . . . . . . 12 ((((𝑥𝑑𝑦) / 2) ∈ ℝ ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)))
2725, 25, 26syl2anc 696 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)))
288recnd 10280 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℂ)
29282halvesd 11490 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)) = (𝑥𝑑𝑦))
3027, 29eqtrd 2794 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (𝑥𝑑𝑦))
318leidd 10806 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ≤ (𝑥𝑑𝑦))
3230, 31eqbrtrd 4826 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) ≤ (𝑥𝑑𝑦))
33 bldisj 22424 . . . . . . . . 9 (((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) ∧ (((𝑥𝑑𝑦) / 2) ∈ ℝ* ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ* ∧ (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) ≤ (𝑥𝑑𝑦))) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)
344, 5, 18, 14, 14, 32, 33syl33anc 1492 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)
35 eleq2 2828 . . . . . . . . . 10 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑥𝑚𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
36 ineq1 3950 . . . . . . . . . . 11 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑚𝑛) = ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛))
3736eqeq1d 2762 . . . . . . . . . 10 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑚𝑛) = ∅ ↔ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅))
3835, 373anbi13d 1550 . . . . . . . . 9 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦𝑛 ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅)))
39 eleq2 2828 . . . . . . . . . 10 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑦𝑛𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
40 ineq2 3951 . . . . . . . . . . 11 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
4140eqeq1d 2762 . . . . . . . . . 10 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅ ↔ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅))
4239, 413anbi23d 1551 . . . . . . . . 9 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦𝑛 ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)))
4338, 42rspc2ev 3463 . . . . . . . 8 (((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑) ∧ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑) ∧ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)) → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
4417, 20, 22, 24, 34, 43syl113anc 1489 . . . . . . 7 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
4544ex 449 . . . . . 6 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
4645ralrimivva 3109 . . . . 5 (𝑑 ∈ (Met‘𝑋) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
4715mopntopon 22465 . . . . . 6 (𝑑 ∈ (∞Met‘𝑋) → (MetOpen‘𝑑) ∈ (TopOn‘𝑋))
48 ishaus2 21377 . . . . . 6 ((MetOpen‘𝑑) ∈ (TopOn‘𝑋) → ((MetOpen‘𝑑) ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
493, 47, 483syl 18 . . . . 5 (𝑑 ∈ (Met‘𝑋) → ((MetOpen‘𝑑) ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
5046, 49mpbird 247 . . . 4 (𝑑 ∈ (Met‘𝑋) → (MetOpen‘𝑑) ∈ Haus)
51 eleq1 2827 . . . 4 (𝐽 = (MetOpen‘𝑑) → (𝐽 ∈ Haus ↔ (MetOpen‘𝑑) ∈ Haus))
5250, 51syl5ibrcom 237 . . 3 (𝑑 ∈ (Met‘𝑋) → (𝐽 = (MetOpen‘𝑑) → 𝐽 ∈ Haus))
5352rexlimiv 3165 . 2 (∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑) → 𝐽 ∈ Haus)
542, 53syl 17 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  cin 3714  c0 4058   class class class wbr 4804  cfv 6049  (class class class)co 6814  cr 10147  0cc0 10148   + caddc 10151  *cxr 10285   < clt 10286  cle 10287   / cdiv 10896  2c2 11282  +crp 12045   +𝑒 cxad 12157  ∞Metcxmt 19953  Metcme 19954  ballcbl 19955  MetOpencmopn 19958  TopOnctopon 20937  Hauscha 21334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-icc 12395  df-topgen 16326  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-top 20921  df-topon 20938  df-bases 20972  df-haus 21341
This theorem is referenced by:  cnfldhaus  22809  rehaus  22823  metreg  22887  lmcau  23331  cmetss  23333  minveclem4a  23421  minvecolem4a  28063  minvecolem4b  28064  minvecolem4  28066  hlimf  28424  hmopidmchi  29340  rrhcn  30371  rrexthaus  30381  sitmcl  30743  heiborlem9  33949  bfplem1  33952
  Copyright terms: Public domain W3C validator